В водном растворе среда щелочная в случае. ЦУ (ценные указания)

Вспомните:

Реакция нейтрализации — это реакция между кислотой и щелочью, в результате которой образуются соль и вода;

Под чистой водой химики понимают химически чистую воду, не содержащую никаких примесей и растворенных солей, т. е. дистиллированную воду.

Кислотность среды

Для различных химических, промышленных и биологических процессов очень важной характеристикой является кислотность растворов, характеризующая содержание кислот или щелочей в растворах. Поскольку кислоты и щелочи являются электролитами, то для характеристики кислотности среды используют содержание ионов H+ или OH - .

В чистой воде и в любом растворе вместе с частицами растворенных веществ присутствуют также ионы H+ и OH - . Это происходит благодаря диссоциации самой воды. И хотя мы считаем воду неэлектролитом, тем не менее она может диссоциировать: H 2 O ^ H+ + OH - . Но этот процесс происходит в очень незначительной степени: в 1 л воды на ионы распадается только 1 . 10 -7 моль молекул.

В растворах кислот в результате их диссоциации появляются дополнительные ионы H+. В таких растворах ионов H+ значительно больше, чем ионов OH - , образовавшихся при незначительной диссоциации воды, поэтому эти растворы называют кислотными (рис. 11.1, слева). Принято говорить, что в таких растворах кислотная среда. Чем больше ионов H+ содержится в растворе, тем больше кислотность среды.

В растворах щелочей в результате диссоциации, наоборот, преобладают ионы OH - , а катионы H+ ввиду незначительной диссоциации воды почти отсутствуют. Среда таких растворов щелочная (рис. 11.1, справа). Чем выше концентрация ионов OH - , тем более щелочной является среда раствора.

В растворе поваренной соли количество ионов H+ и OH - одинаково и равно 1 . 10 -7 моль в 1 л раствора. Такую среду называют нейтральной (рис. 11.1, по центру). Фактически это означает, что раствор не содержит ни кислоты, ни щелочи. Нейтральная среда характерна для растворов некоторых солей (образованных щелочью и сильной кислотой) и многих органических веществ. У чистой воды также нейтральная среда.

Водородный показатель

Если сравнивать вкус кефира и лимонного сока, то можно смело утверждать, что лимонный сок намного кислее, т. е. кислотность этих растворов разная. Вы уже знаете, что в чистой воде также содержатся ионы H+, но кислого вкуса воды не ощущается. Это объясняется слишком малой концентрацией ионов H+. Часто бывает недостаточно сказать, что среда кислотная или щелочная, а необходимо количественно ее охарактеризовать.

Кислотность среды количественно характеризуют водородным показателем pH (произносится «пэ-аш»), связанным с концентрацией

ионов Гидрогена. Значение pH соответствует определенному содержанию катионов Гидрогена в 1 л раствора. В чистой воде и в нейтральных растворах в 1 л содержится 1 . 10 7 моль ионов H+, а значение pH равно 7. В растворах кислот концентрация катионов H+ больше, чем в чистой воде, а в щелочных растворах меньше. В соответствии с этим меняется и значение водородного показателя pH: в кислотной среде он находится в пределах от 0 до 7, а в щелочных — от 7 до 14. Впервые водородный показатель предложил использовать датский химик Педер Сёренсен.

Вы могли заметить, что значение pH связано с концентрацией ионов H+. Определение pH напрямую связано с вычислением логарифма числа, которое вы будете изучать на уроках математики в 11 классе. Но взаимосвязь между содержанием ионов в растворе и значением pH можно проследить по следующей схеме:



Значение рН водных растворов большинства веществ и природных растворов находится в интервале от 1 до 13 (рис. 11.2).

Рис. 11.2. Значение рН различных природных и искусственных растворов

Сёрен Педер Лауриц Сёренсен

Датский физико-химик и биохимик, президент Датского королевского общества. Окончил Копенгагенский университет. В 31 год стал профессором Датского политехнического института. Возглавлял престижную физико-химическую лабораторию при пивоваренном заводе Карлсберга в Копенгагене, где сделал свои главные научные открытия. Основная научная деятельность посвящена теории растворов: он ввел понятие о водородном показателе (рН), изучал зависимость активности ферментов от кислотности растворов. За научные достижения Сёренсен внесен в перечень «100 выдающихся химиков XX века», но в истории науки он остался прежде всего как ученый, который ввел понятия «рН» и «рН-метрия».

Определение кислотности среды

Для определения кислотности раствора в лабораториях чаще всего используют универсальный индикатор (рис. 11.3). По его окраске можно определить не только наличие кислоты или щелочи, но и значение рН раствора с точностью до 0,5. Для более точного измерения рН существуют специальные приборы — рН-метры (рис. 11.4). Они позволяют определить рН раствора с точностью до 0,001-0,01.

Используя индикаторы или рН-метры, можно следить за тем, как протекают химические реакции. Например, если к раствору натрий гидроксида приливать хлоридную кислоту, то произойдет реакция нейтрализации:

Рис. 11.3. Универсальным индикатором определяют приблизительное значение рН

Рис. 11.4. Для измерения pH растворов используют специальные приборы — рН-метры: а — лабораторный (стационарный); б — портативный

В этом случае растворы реагентов и продуктов реакции бесцветны. Если же в исходный раствор щелочи поместить электрод рН-метра, то о полной нейтрализации щелочи кислотой можно судить по значению рН образованного раствора.

Применение водородного показателя

Определение кислотности растворов имеет большое практическое значение во многих областях науки, промышленности и других сферах жизни человека.

Экологи регулярно измеряют рН дождевой воды, воды рек и озер. Резкое повышение кислотности природных вод может быть следствием загрязнения атмосферы или попадания в водоемы отходов промышленных предприятий (рис. 11.5). Такие изменения влекут за собой гибель растений, рыбы и других обитателей водоемов.

Водородный показатель очень важен для изучения и наблюдения процессов, происходящих в живых организмах, т. к. в клетках протекают многочисленные химические реакции. В клинической диагностике определяют pH плазмы крови, мочи, желудочного сока и др. (рис. 11.6). Нормальное значение pH крови — от 7,35 до 7,45. Даже небольшое изменение pH крови человека вызывает серьезные заболевания, а при рН = 7,1 и ниже начинаются необратимые изменения, которые могут привести к смерти.

Для большинства растений важна кислотность почвы, поэтому агрономы заранее проводят анализ почв, определяя их рН (рис. 11.7). Если кислотность слишком велика для определенной культуры, почву известкуют — добавляют мел или известь.

В пищевой промышленности при помощью кислотно-основных индикаторов проводят контроль качества продуктов питания (рис. 11.8). Например, в норме для молока pH = 6,8. Отклонение от этого значения свидетельствует либо о наличии посторонних примесей, либо о его скисании.

Рис. 11.5. Влияние уровня pH воды в водоемах на жизнедеятельность растений в них

Важным является значение pH для косметических средств, которые мы используем в быту. В среднем для кожи человека pH = 5,5. Если кожа контактирует со средствами, кислотность которых существенно отличается от этого значения, то это влечет преждевременное старение кожи, ее повреждение или воспаление. Было замечено, что у прачек, которые длительное время использовали для стирки обычное хозяйственное мыло (pH = 8-10) или стиральную соду (Na 2 CO 3 , pH = 12-13), кожа рук становилась очень сухой и покрывалась трещинами. Поэтому очень важно использовать различные косметические средства (гели, кремы, шампуни и т. д.) с pH, близким к естественному pH кожи.

ЛАБОРАТОРНЫЕ ОПЫТЫ № 1-3

Оборудование: штатив с пробирками, пипетка.

Реактивы: вода, хлоридная кислота, растворы NaCl, NaOH, столовый уксус, универсальный индикатор (раствор или индикаторная бумага), пищевые продукты и косметическая продукция (например, лимон, шампунь, зубная паста, стиральный порошок, газированные напитки, соки и т. д.).

Правила безопасности:

Для опытов используйте небольшие количества реактивов;

Остерегайтесь попадания реактивов на кожу, в глаза; при попадании едкого вещества смойте его большим количеством воды.

Определение ионов Гидрогена и гидроксид-ионов в растворах. Установление приблизительного значения pH воды, щелочных и кислых растворов

1. В пять пробирок налейте по 1-2 мл: в пробирку № 1 — воды, № 2 — хлоридной кислоты, № 3 — раствора натрий хлорида, № 4 — раствора натрий гидроксида и № 5 — столового уксуса.

2. В каждую пробирку добавьте по 2-3 капли раствора универсального индикатора или опустите индикаторную бумагу. Определите pH растворов, сравнивая цвет индикатора по эталонной шкале. Сделайте выводы о наличии в каждой пробирке катионов Гидрогена или гидроксид-ионов. Составьте уравнения диссоциации этих соединений.

Исследование pH пищевой и косметической продукции

Испытайте универсальным индикатором образцы пищевых продуктов и косметической продукции. Для исследования сухих веществ, например, стирального порошка, их необходимо растворить в небольшом количестве воды (1 шпатель сухого вещества на 0,5-1 мл воды). Определите pH растворов. Сделайте выводы о кислотности среды в каждом из исследованных продуктов.


Ключевая идея

Контрольные вопросы

130. Наличием каких ионов в растворе обусловлена его кислотность?

131. Какие ионы содержатся в избытке в кислотных растворах? в щелочных?

132. Какой показатель количественно описывает кислотность растворов?

133. Каково значение рН и содержание ионов H+ в растворах: а) нейтральных; б) слабокислотных; в) слабощелочных; г) сильнокислотных; д) сильнощелочных?

Задания для усвоения материала

134. Водный раствор некоторого вещества имеет щелочную среду. Каких ионов больше в этом растворе: H+ или OH - ?

135. В двух пробирках находятся растворы нитратной кислоты и нитрата калия. Какие индикаторы можно использовать для определения, в какой пробирке содержится раствор соли?

136. В трех пробирках находятся растворы барий гидроксида, нитратной кислоты и кальций нитрата. Как с помощью одного реактива распознать эти растворы?

137. Из приведенного перечня выпишите отдельно формулы веществ, растворы которых имеют среду: а) кислотную; б) щелочную; в) нейтральную. NaCl, HCl, NaOH, HNO 3 , H 3 PO 4 , H 2 SO 4 , Ba(OH) 2 , H 2 S, KNO 3 .

138. Дождевая вода имеет рН = 5,6. Что это означает? Какое вещество, содержащееся в воздухе, при растворении в воде определяет такую кислотность среды?

139. Какая среда (кислотная или щелочная): а) в растворе шампуня (рН = 5,5);

б) в крови здорового человека (рН = 7,4); в) в желудочном соке человека (рН = 1,5); г) в слюне (рН = 7,0)?

140. В составе каменного угля, используемого на теплоэлектростанциях, содержатся соединения Нитрогена и Сульфура. Выброс в атмосферу продуктов сжигания угля приводит к образованию так называемых кислотных дождей, содержащих небольшие количества нитратной или сульфитной кислот. Какие значения рН характерны для такой дождевой воды: больше 7 или меньше 7?

141. Зависит ли рН раствора сильной кислоты от ее концентрации? Ответ обоснуйте.

142. К раствору, содержащему 1 моль калий гидроксида, прилили раствор фенолфталеина. Изменится ли окраска этого раствора, если к нему добавить хлоридную кислоту количеством вещества: а) 0,5 моль; б) 1 моль;

в) 1,5 моль?

143. В трех пробирках без надписей находятся бесцветные растворы натрий сульфата, натрий гидроксида и сульфатной кислоты. Для всех растворов измерили значение рН: в первой пробирке — 2,3, во второй — 12,6, в третьей — 6,9. В какой пробирке содержится какое вещество?

144. Ученик купил в аптеке дистиллированную воду. рН-метр показал, что значение рН этой воды равно 6,0. Затем ученик прокипятил эту воду в течение длительного времени, заполнил контейнер до верха горячей водой и закрыл крышкой. Когда вода остыла до комнатной температуры, рН-метр определил значение 7,0. После этого ученик трубочкой пропускал воздух через воду, и рН-метр снова показал 6,0. Как можно объяснить результаты этих измерений рН?

145. Как вы считаете, почему в двух бутылках уксуса от одного производителя могут содержаться растворы с несколько различными значениями рН?

Это материал учебника

Гидролиз солей

Тема «Гидролиз солей» – одна из наиболее трудных для учащихся 9-го класса, изучающих неорганическую химию. И как думается, трудность ее не в действительной сложности самого изучаемого материала, а в том, как он излагается в учебниках. Так, у Ф.Г.Фельдмана и Г.Е.Рудзитиса из соответствующего параграфа очень мало, что можно понять. В учебниках же Л.С.Гузея и Н.С.Ахметова данная тема вообще исключена, хотя учебник Ахметова предназначен для учащихся 8–9-х классов с углубленным изучением химии.
Пользуясь учебниками указанных авторов, ученик вряд ли сможет хорошо понять теорию растворов, сущность электролитической диссоциации веществ в водной среде, соотнести реакции ионного обмена с реакциями гидролиза солей, образованных разными по силе кислотами и основаниями. Кроме того, в конце каждого учебника имеется таблица растворимости, но нигде и никак не поясняется, почему в отдельных ее клеточках стоят прочерки, а в текстах учебников ученики встречают формулы этих солей.
Мы попытаемся в краткой лекции для учителей (прежде всего для начинающих, им особенно трудно отвечать на возникающие у детей вопросы) восполнить данный пробел и по-своему осветить проблему составления уравнений реакций гидролиза и определения характера образующейся среды.

Гидролизом называется процесс разложения веществ водой (само слово «гидролиз» об этом говорит: греч. – вода и – разложение). Разные авторы, давая определение этому явлению, выделяют, что при этом образуется кислота или кислая соль, основание или основная соль (Н.Е.Кузьменко); при взаимодействии ионов соли с водой образуется слабый электролит (А.Э.Антошин); в результате взаимодействия ионов соли с водой смещается равновесие электролитической диссоциации воды (А.А.Макареня); составные части растворенного вещества соединяются с составными частями воды (Н.Л.Глинка) и т.д.
Каждый автор, давая определение гидролиза, отмечает наиболее важную, на его взгляд, сторону этого сложного, многогранного процесса. И каждый из них по-своему прав. Думается, дело учителя, какому определению отдать предпочтение – что ему ближе по его образу мышления.
Итак, гидролиз – это разложение веществ водой. Причиной его является электролитическая диссоциация соли и воды на ионы и взаимодействие между ними. Вода диссоциирует незначительно на ионы Н + и ОН – ( 1 молекула из 550 000), причем в процессе гидролиза один или оба этих иона могут связываться с ионами, образующимися при диссоциации соли, в малодиссоциирующее, летучее или нерастворимое в воде вещество.
Соли, образованные сильными основаниями (NаОН, КОH, Ва(ОH) 2) и сильными кислотами (Н 2 SO 4 ,
HCl, НNO 3), гидролизу не подвергаются, т.к. образующие их катионы и анионы не способны в растворах связывать ионы Н + и ОН – (причина – высокая диссоциация).
Когда соль образована слабым основанием или слабой кислотой или оба «родителя» – слабые, соль в водном растворе подвергается гидролизу. При этом реакция среды зависит от относительной силы кислоты и основания. Другими словами, водные растворы таких солей могут быть нейтральными, кислыми или щелочными в зависимости от констант диссоциации образующихся новых веществ.
Так, при диссоциации ацетата аммония СН 3 СООNН 4 реакция раствора будет слабощелочной, т.к. константа диссоциации NН 4 ОН (k дис = 6,3 10 –5) больше константы диссоциации СН 3 СООН
(k дис = 1,75 10 –5). У другой же соли уксусной кислоты – ацетата алюминия (СН 3 СОО) 3 Al – реакция раствора будет слабокислой, т.к. k дис (СН 3 СООН) = 1,75 10 –5 больше k дис (Al(ОН) 3) = 1,2 10 –6 .
Реакции гидролиза в одних случаях являются обратимыми, а в других – идут до конца. Количественно гидролиз характеризуется безразмерной величиной г, называемой степенью гидролиза и показывающей, какая часть от общего количества молекул соли, находящихся в растворе, подвергается гидролизу:

Г = n /N 100%,

где n – число гидролизованных молекул, N – общее число молекул в данном растворе. Например, если г = 0,1%, то это означает, что из 1000 молекул соли водой разложилась только одна:

n = г N /100 = 0,1 1000/100 = 1.

Степень гидролиза зависит от температуры, концентрации раствора и природы растворенного вещества. Так, если рассмотреть гидролиз cоли СН 3 СООNа, то степень ее гидролиза для растворов различной концентрации будет следующая: для 1М раствора – 0,003%, для 0,1М – 0,01%, для
0,01М – 0,03%, для 0,001М – 0,1% (данные взяты из книги Г.Реми). Эти значения согласуются с принципом Ле Шателье.
Повышение температуры увеличивает кинетическую энергию молекул, их распад на катионы и анионы и взаимодействие с ионами воды (Н + и ОН –) – слабого при комнатной температуре электролита.
Учитывая природу реагирующих веществ, для связывания ионов ОН – к раствору соли можно добавить кислоту, а для связывания ионов Н + – щелочь. Можно также добавить другие соли, гидролизующиеся по противоположному иону. В этом случае происходит взаимное усиление гидролиза обеих солей.
Ослабить гидролиз можно (если это необходимо) понижением температуры, увеличением концентрации раствора, введением в него одного из продуктов гидролиза: кислоты, если при гидролизе накапливаются ионы Н + , или щелочи, если накапливаются ионы ОН – .
Все реакции нейтрализации протекают экзотермически, а гидролиза – эндотермически. Поэтому выход первых с повышением температуры уменьшается, а вторых – увеличивается.
Ионы Н + и ОН – не могут существовать в растворе в значительных концентрациях – они соединяются в молекулы воды, смещая равновесие вправо.
Разложение соли водой объясняется связыванием катионов и/или анионов диссоциированной соли в молекулы слабого электролита ионами воды (Н + и/или ОН –), всегда имеющимися в растворе. Образование слабого электролита, осадка, газа или полное разложение нового вещества равноценно удалению ионов соли из раствора, что в соответствии с принципом Ле Шателье (действие равно противодействию) смещает равновесие диссоциации соли вправо, а следовательно, приводит к разложению соли до конца. Отсюда и появляются прочерки в таблице растворимости против ряда соединений.
Если молекулы слабого электролита образуются за счет катионов соли, то говорят, что гидролиз идет по катиону и среда будет кислая, а если за счет анионов соли, то говорят, что гидролиз идет по аниону и среда будет щелочная. Иными словами, кто сильнее – кислота или основание, – тот и определяет среду.
Гидролизу подвергаются только растворимые соли слабых кислот и/или оснований. Дело в том, что если соль малорастворима, то концентрации ее ионов в растворе ничтожно малы и говорить о гидролизе такой соли не имеет смысла.

Составление уравнений реакций гидролиза солей

Гидролиз солей слабых многоосновных оснований и/или кислот происходит ступенчато. Число ступеней гидролиза равно наибольшему заряду одного из ионов соли.
Например:

Однако гидролиз по второй ступени и особенно по третьей идет очень слабо, поскольку
г1 >> г2 >> г3 . Поэтому при написании уравнений гидролиза обычно ограничиваются первой ступенью. Если гидролиз практически завершается на первой ступени, то при гидролизе солей слабых многоосновных оснований и сильных кислот образуются основные соли, а при гидролизе солей сильных оснований и слабых многоосновных кислот образуются кислые соли.
Количество молекул воды, участвующих в процессе гидролиза соли по схеме реакции, определяется произведением валентности катиона на число его атомов в формуле соли (правило автора).
Например:

Nа 2 СО 3 2Na + 1 2 = 2 (H 2 O),

Al 2 (SО 4) 3 2Al 3+ 3 2 = 6 (H 2 O),

Co(CH 3 COO) 2 Со 2+ 2 1 = 2 (H 2 O).

Поэтому при составлении уравнения гидролиза пользуемся следующим алгоритмом (на примере гидролиза Al 2 (SО 4) 3):

1. Определяем, из каких веществ образована соль:

2. Предполагаем, как мог бы пойти гидролиз:

Al 2 (SО 4) 3 + 6Н–ОН = 2Аl 3+ + 3 + 6H + + 6OH – .

3. Поскольку Al(ОН) 3 – слабое основание и его катион Al 3+ связывают ионы ОН – из воды, то процесс фактически идет так:

Al 2 (SO 4) 3 + 6Н + + 6OH – = 2Аl(ОН) 2+ + 3 + 6H + + 2OH – .

4. Сопоставляем количества оставшихся в растворе ионов Н + и ОН – и определяем реакцию среды:

5. После гидролиза образовалась новая соль: (Al(ОН) 2) 2 SО 4 , или Аl 2 (ОН) 4 SO 4 , – дигидроксосульфат алюминия (или тетрагидроксосульфат диалюминия) – основная соль. Частично может образоваться и AlОНSО 4 (гидроксосульфат алюминия), но в значительно меньшем количестве, и им можно пренебречь.

Другой пример:

2. Na 2 SiO 3 + 2Н 2 О = 2Na + + + 2Н + + 2ОН – .

3. Поскольку Н 2 SiO 3 – слабая кислота и ее ион связывает ионы Н + из воды, то фактически реакция идет так:

2Na + + + 2Н + + 2ОН – = 2Na + + Н + Н + + 2ОН – .

4. Н + + 2ОН – = Н 2 О + ОН – щелочная среда.

5. Na + + Н = NаНSiO 3 – гидросиликат натрия – кислая соль.

Кислотность или щелочность среды легко определить по количеству оставшихся в растворе ионов Н + или ОН – при условии, что новые вещества образовались и существуют в растворе в эквивалентных отношениях и другие реактивы в ходе реакции не добавлялись. Среда может быть кислая или слабокислая (если ионов Н + мало), щелочная (если ионов ОН – много) или слабощелочная, а также нейтральная, если значения констант диссоциации слабой кислоты и слабого основания близки и все оставшиеся в растворе ионы Н + и ОН – после гидролиза снова соединились с образованием Н 2 О.
Мы уже отмечали, что степень гидролиза соли тем больше, чем слабее кислота или основание, образовавшие эту соль. Поэтому необходимо для помощи учащимся привести ряды анионов и катионов, соответствующие уменьшению силы кислот и оснований их образующих (по А.В.Метельскому).

Анионы:

F – > > CH 3 COO – > H > HS – >

> > > > .

Катионы:

Сd 2+ > Mg 2+ > Mn 2+ > Fe 2+ > Co 2+ > Ni 2+ >

> Cu 2+ > Pb 2+ > Zn 2+ > Al 2+ > Cr 2+ > Fe 2+ .

Чем правее в этих рядах расположен ион, тем с большей силой идет гидролиз образованной им соли, т.е. его основание или кислота cлабее, чем у стоящих слева от него. Особенно сильно идет гидролиз солей, образованных одновременно слабыми основанием и кислотой. Но даже для них степень гидролиза обычно не превышает 1%. Тем не менее в некоторых случаях гидролиз таких солей протекает особенно сильно и степень гидролиза достигает почти 100%. Такие соли в водных растворах не существуют, а хранятся только в сухом виде. В таблице растворимости против них стоит прочерк. Примерами таких солей могут служить ВаS, Аl 2 S 3 , Сr 2 (SO 3) 3 и другие (см. таблицу растворимости в учебниках).
Подобные соли, имеющие высокую степень гидролиза, гидролизуются полностью и необратимо, т. к. продукты их гидролиза выводятся из раствора в виде малорастворимого, нерастворимого, газообразного (летучего), малодиссоциирующего вещества или разлагаются водой на другие вещества.
Например:

Соли, полностью разлагаемые водой, нельзя получить реакцией ионного обмена в водных растворах, т.к. вместо ионного обмена более активно протекает реакция гидролиза.

Например:

2АlCl 3 + 3Na 2 S Аl 2 S 3 + 6NaCl (так могло бы быть),

2АlCl 3 + 3Na 2 S + 6H 2 O 2Al(OH) 3 + 3H 2 S + 6NaCl (так есть фактически).

Соли, подобные Al 2 S 3 , получают в безводных средах спеканием компонентов в эквивалентных количествах или другими способами:

Многие галогениды, как правило, активно реагируют с водой, образуя гидрид одного элемента и гидроксид другого.
Например:

СlF + H–OH HClO + HF,

PСl 3 + 3H–OH P(OH) 3 + 3HCl
(по Л.Полингу).

Как правило, при такого рода реакциях, также называемых гидролизом, более электроотрицательный элемент соединяется с Н + , а менее электроотрицательный – с ОН – . Легко заметить, что приведенные выше реакции протекают в соответствии с этим правилом.
Кислые соли слабых кислот также подвергаются гидролизу. Однако в этом случае наряду с гидролизом протекает диссоциация кислотного остатка. Так, в растворе NaHCО 3 одновременно протекают гидролиз H, приводящий к накоплению ОH – -ионов:

Н + Н–ОН Н 2 СО 3 + ОH – ,

и диссоциация, хотя и незначительная:

Н + H + .

Таким образом, реакция раствора кислой соли может быть как щелочной (если гидролиз аниона преобладает над его диссоциацией), так и кислой (в обратном случае). Это определяется соотношением константы гидролиза соли (К гидр) и константы диссоциации (К дис) соответствующей кислоты. В рассмотренном примере К гидр аниона больше К дис кислоты, поэтому раствор данной кислой соли имеет щелочную реакцию (что и используют страдающие изжогой от повышенной кислотности желудочного сока, хотя делают это зря). При обратном соотношении констант, например в случае гидролиза NaHSO 3 , реакция раствора будет кислой.
Гидролиз основной соли, например гидроксохлорида меди(II), протекает так:

Сu(ОН)Сl + Н–ОН Сu(ОН) 2 + НСl,

или в ионном виде:

СuОН + + Сl – + H + + ОH – Сu(ОН) 2 + Cl – + H + среда кислая.

Гидролиз в широком смысле – это реакции обменного разложения между различными веществами и водой (Г.П.Хомченко). Такое определение охватывает гидролиз всех соединений – как неорганических (солей, гидридов, галогенидов, халькогенов и др.), так и органических (сложных эфиров, жиров, углеводов, белков и др.).
Например:

(C 6 H 10 O 5)n + n H–OH n C 6 H 12 O 6 ,

CaC 2 + 2H–OH Ca(OH) 2 + C 2 H 2 ,

Cl 2 + H–OH HCl + HClO,

PI 3 + 3H–OH H 3 PO 3 + 3HI.

В результате гидролиза минералов – алюмосиликатов – происходит разрушение горных пород. Гидролиз некоторых солей – Na 2 CO 3 , Na 3 РО 4 – применяется для очистки воды и уменьшения ее жесткости.
Растущая быстрыми темпами гидролизная отрасль промышленности вырабатывает из отходов (древесные опилки, хлопковая шелуха, подсолнечная лузга, солома, кукурузные кочерыжки, отходы сахарной свеклы и др.) ряд ценных продуктов: этиловый спирт, кормовые дрожжи, глюкозу, «сухой лед», фурфурол, метанол, лигнин и многие другие вещества.
Гидролиз протекает в организме человека и животных при переваривании пищи (жиров, углеводов, белков) в водной среде под действием ферментов – биологических катализаторов. Он играет важную роль в ряде химических превращений веществ в природе (цикл Кребса, цикл трикарбоновых кислот) и промышленности. Поэтому нам думается, что вопросам изучения гидролиза в школьном курсе химии необходимо уделять значительно больше внимания.
Ниже приведен пример раздаточной карточки , предлагаемой учащимся для закрепления материала после изучения темы «Гидролиз солей» в 9-м классе.

Алгоритм написания уравнения гидролиза Fe 2 (SO 4) 3

1. Определяем, чем образована соль:

2. Предполагаем, как мог бы пойти гидролиз:

Fe 2 (SO 4) 3 + 6Н 2 О = 2Fe 3+ + 3 + 6H + + 6OH – .

3. Поскольку Fe(OH) 3 – слабое основание, то катионы Fe 3+ будут связываться анионами ОН – из воды и гидролиз фактически будет протекать так:

2Fе 3+ + 3 + 6H + + 6OH – = 2Fe(OH) 2+ + 3 + 6H + + 2OH – .

4. Определяем реакцию среды:

6Н + + 2ОН – = 2Н 2 О + 4Н + кислая среда.

5. Определяем новую соль по ионам, оставшимся в растворе:

2Fe(OH) 2+ + = 2 SO 4 – дигидроксосульфат железа(III)
– основная соль.

Гидролиз идет по катиону.

Дополнительная информация
(на обороте карточки)

1. Кто сильнее – основание или кислота, тот и определяет среду: кислую или щелочную.
2. Диссоциацию и гидролиз многоосновных кислот и оснований учитываем только по первой ступени. Например:

Аl(ОН) 3 = Аl + ОH – ,

Н 3 РO 4 = Н + + .

3. Ряд активности кислот (их силы):

4. Ряд активности оснований (их силы):

5. Чем правее в своем ряду стоит кислота и основание, тем они слабее.
6. Количество молекул воды, участвующих в гидролизе соли по схеме реакции, определяется произведением валентности катиона на число его атомов в формуле соли:

Na 2 SO 3 2Na + 1 2 = 2 (H 2 O),

ZnCl 2 1Zn 2+ 2 1 = 2 (H 2 O),

Al 2 (SO 4) 3 2Al 3+ 3 2 = 6 (H 2 O).

7. Гидролиз идет по катиону, если основание слабое, и по аниону, если кислота слабая.

Применение данного алгоритма способствует осознанному написанию учащимся уравнений гидролиза и при достаточной тренировке не вызывает никаких затруднений.

ЛИТЕРАТУРА

Антошин А.Э., Цапок П.И. Химия. М.: Химия, 1998;
Ахметов Н.С . Неорганическая химия. М.: Просвещение, 1990;
Глинка Н.Л. Общая химия. Л.: Химия, 1978;
Еремин В.В., Кузьменко Н.Е. Химия. М.: Экзамен, 1998;
Еремин В.В., Кузьменко Н.Е., Попов В.А . Химия. М.: Дрофа, 1997;
Кузьменко Н.Е., Чуранов С.С. Общая и неорганическая химия. М.: Изд-во МГУ, 1977;
Метельский А.В. Химия. Минск: Белорусская энциклопедия, 1997;
Полинг Л., Полинг П . Химия. М.: Мир, 1998;
Пиментел Д.С. Химия. М.: Мир, 1967;
Фельдман Ф.Г., Рудзитис Г.Е. Химия-9. М.: Просвещение, 1997;
Холин Ю.В., Слета Л.А. Репетитор по химии. Харьков: Фолино, 1998;
Хомченко Г.П . Химия. М.: Высшая школа, 1998.

Для того, чтобы понять, что такое гидролиз солей, вспомним для начала, как диссоциируют кислоты и щелочи.

Общим между всеми кислотами является то, что при их диссоциации обязательно образуются катионы водорода (Н +), при диссоциации же всех щелочей всегда образуются гидроксид-ионы (ОН −).

В связи с этим, если в растворе, по тем или иным причинам, больше ионов Н + говорят, что раствор имеет кислую реакцию среды, если ОН − — щелочную реакцию среды.

Если с кислотами и щелочами все понятно, то какая же реакция среды будет в растворах солей?

На первый взгляд, она всегда должна быть нейтральной. И правда же, откуда, например, в растворе сульфида натрия взяться избытку катионов водорода или гидроксид-ионов. Сам сульфид натрия при диссоциации не образует ионов ни одного, ни другого типа:

Na 2 S = 2Na + + S 2-

Тем не менее, если бы перед вами оказались, к примеру, водные растворы сульфида натрия, хлорида натрия, нитрата цинка и электронный pH-метр (цифровой прибор для определения кислотности среды) вы бы обнаружили необычное явление. Прибор показал бы вам, что рН раствора сульфида натрия больше 7, т.е. в нем явный избыток гидроксид-ионов. Среда раствора хлорида натрия оказалась бы нейтральной (pH = 7), а раствора Zn(NO 3) 2 кислой.

Единственное, что соответствует нашим ожиданиям – это среда раствора хлорида натрия. Она оказалась нейтральной, как и предполагалось.
Но откуда же взялся избыток гидроксид-ионов в растворе сульфида натрия, и катионов-водорода в растворе нитрата цинка?

Попробуем разобраться. Для этого нам нужно усвоить следующие теоретические моменты.

Любую соль можно представить как продукт взаимодействия кислоты и основания. Кислоты и основания делятся на сильные и слабые. Напомним, что сильными называют те кислоты, и основания, степень диссоциации, которых близка к 100%.

примечание: сернистую (H 2 SO 3) и фосфорную (H 3 PO 4) чаще относят к кислотам средней силы, но при рассмотрении заданий по гидролизу нужно относить их к слабым.

Кислотные остатки слабых кислот, способны обратимо взаимодействовать с молекулами воды, отрывая от них катионы водорода H + . Например, сульфид-ион, являясь кислотным остатком слабой сероводородной кислоты, взаимодействует с ней следующим образом:

S 2- + H 2 O ↔ HS − + OH −

HS − + H 2 O ↔ H 2 S + OH −

Как можно видеть, в результате такого взаимодействия образуется избыток гидроксид-ионов, отвечающий за щелочную реакцию среды. То есть кислотные остатки слабых кислот увеличивают щелочность среды. В случае растворов солей содержащих такие кислотные остатки говорят, что для них наблюдается гидролиз по аниону .

Кислотные остатки сильных кислот, в отличие от слабых, с водой не взаимодействуют. То есть они не оказывают влияния на pH водного раствора. Например, хлорид-ион, являясь кислотным остатком сильной соляной кислоты, с водой не реагирует:

То есть, хлорид-ионы, не влияют на pН раствора.

Из катионов металлов, так же с водой способны взаимодействовать только те, которым соответствуют слабые основания. Например, катион Zn 2+ , которому соответствует слабое основание гидроксид цинка. В водных растворах солей цинка протекают процессы:

Zn 2+ + H 2 O ↔ Zn(OH) + + H +

Zn(OH) + + H 2 O ↔ Zn(OH) + + H +

Как можно видеть из уравнений выше, в результате взаимодействия катионов цинка с водой, в растворе накапливаются катионы водорода, повышающие кислотность среды, то есть понижающие pH. Если в состав соли, входят катионы, которым соответствуют слабые основания, в этом случае говорят что соль гидролизуется по катиону .

Катионы металлов, которым соответствуют сильные основания, с водой не взаимодействуют. Например, катиону Na + соответствует сильное основание – гидроксид натрия. Поэтому ионы натрия с водой не реагируют и никак не влияют на pH раствора.

Таким образом, исходя из вышесказанного соли можно разделить на 4 типа, а именно, образованные:

1) сильным основанием и сильной кислотой,

Такие соли не содержат ни кислотных остатков, ни катионов металлов, взаимодействующих с водой, т.е. способных повлиять на pH водного раствора. Растворы таких солей имеют нейтральную реакцию среды. Про такие соли говорят, что они не подвергаются гидролизу .

Примеры: Ba(NO 3) 2 , KCl, Li 2 SO 4 и т.д.

2) сильным основанием и слабой кислотой

В растворах таких солей, с водой реагируют только кислотные остатки. Среда водных растворов таких солей щелочная, в отношении солей такого типа говорят, что они гидролизуются по аниону

Примеры: NaF, K 2 CO 3 , Li 2 S и т.д.

3) слабым основанием и сильной кислотой

У таких солей с водой реагируют катионы, а кислотные остатки не реагируют – гидролиз соли по катиону , среда кислая.

Примеры: Zn(NO 3) 2 , Fe 2 (SO 4) 3 , CuSO 4 и т.д.

4) слабым основанием и слабой кислотой.

С водой реагируют как катионы, так и анионы кислотных остатков. Гидролиз солей такого рода идет и по катиону, и по аниону или же. Также говорят про такие соли, что они подвергаются необратимому гидролизу .

Что же значит то, что они необратимо гидролизуются?

Поскольку в данном случае с водой реагируют и катионы металла (или NH 4 +) и анионы кислотного остатка, в раcтворе одновременно возникают и ионы H + , и ионы OH − , которые образуют крайне малодиссоциирующее вещество – воду (H 2 O).

Это, в свою очередь, приводит к тому, что соли образованные кислотными остатками слабых оснований и слабых кислот не могут быть получены обменными реакциями, а только твердофазным синтезом, либо и вовсе не могут быть получены. Например, при смешении раствора нитрата алюминия с раствором сульфида натрия, вместо ожидаемой реакции:

2Al(NO 3) 3 + 3Na 2 S = Al 2 S 3 + 6NaNO 3 (− так реакция не протекает!)

Наблюдается следующая реакция:

2Al(NO 3) 3 + 3Na 2 S + 6H 2 O= 2Al(OH) 3 ↓+ 3H 2 S + 6NaNO 3

Тем не менее, сульфид алюминия без проблем может быть получен сплавлением порошка алюминия с серой:

2Al + 3S = Al 2 S 3

При внесении сульфида алюминия в воду, он также как и при попытке его получения в водном растворе, подвергается необратимому гидролизу.

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S

Химическим путем рН раствора можно определить при помощи кислотно-основных индикаторов.

Кислотно-основные индикаторы – органические вещества, окраска которых зависит от кислотности среды.

Наиболее распространенными индикаторами являются лакмус, метиловый оранжевый, фенолфталеин. Лакмус в кислой среде окрашивается в красный цвет, в щелочной – в синий. Фенолфталеин в кислой среде - бесцветный, в щелочной окрашивается в малиновый цвет. Метиловый оранжевый в кислой среде окрашивается в красный цвет, а в щелочной – в желтый.

В лабораторной практике часто смешивают ряд индикаторов, подобранных таким образом, чтобы цвет смеси изменялся в широких пределах значений рН. С их помощью можно определить рН раствора с точностью до единицы. Эти смеси называют универсальными индикаторами .

Имеются специальные приборы – рН–метры, с помощью которых можно определить рН растворов в диапазоне от 0 до 14 с точностью до 0,01 единицы рН.

Гидролиз солей

При растворении некоторых солей в воде нарушается равновесие процесса диссоциации воды и, соответственно, изменяется рН среды. Это объясняется тем, что соли реагируют с водой.

Гидролиз солей химическое обменное взаимодействие ионов растворенной соли с водой, приводящее к образованию слабодиссоциирующих продуктов (молекул слабых кислот или оснований, анионов кислых солей или катионов основных солей) и сопровождающееся изменением рН среды.

Рассмотрим процесс гидролиза в зависимости от природы оснований и кислот, образующих соль.

Соли, образованные сильными кислотами и сильными основаниями (NaCl, kno3, Na2so4 и др.).

Допустим , что при взаимодействии хлорида натрия с водой происходит реакция гидролиза с образованием кислоты и основания:

NaCl + H 2 O ↔ NaOH + HCl

Для правильного представления о характере этого взаимодействия запишем уравнение реакции в ионном виде, учитывая, что единственным слабодиссоциирующим соединением в этой системе является вода:

Na + + Cl - + HOH ↔ Na + + OH - + H + + Cl -

При сокращении одинаковых ионов в левой и правой частях уравнения остается уравнение диссоциации воды:

Н 2 О ↔ Н + + ОН -

Как видно, в растворе нет избыточных ионов Н + или ОН - по сравнению с их содержанием в воде. Кроме того, никаких других слабодиссоциирующих или труднорастворимых соединений не образуется. Отсюда делаем вывод, что соли, образованные сильными кислотами и основаниями гидролизу не подвергаются, а реакция растворов этих солей такая же, как и в воде, нейтральная (рН=7).

При составлении ионно–молекулярных уравнений реакций гидролиза необходимо:

1) записать уравнение диссоциации соли;

2) определить природу катиона и аниона (найти катион слабого основания или анион слабой кислоты);

3) записать ионно-молекулярное уравнение реакции, учитывая, что вода - слабый электролит- и что сумма зарядов должна быть одинаковой в обеих частях уравнения.

Соли, образованные слабой кислотой и сильным основанием

(Na 2 CO 3 , K 2 S, CH 3 COONa и др .)

Рассмотрим реакцию гидролиза ацетата натрия. Эта соль в растворе распадается на ионы: CH 3 COONa ↔ CH 3 COO - + Na + ;

Na + -катион сильного основания, CH 3 COO - - анион слабой кислоты.

Катионы Na + не могут связывать ионы воды, так как NaОН – сильное основание - полностью распадается на ионы. Анионы слабой уксусной кислоты CH 3 COO - связывают ионы водорода с образованием малодиссоциированной уксусной кислоты:

CH 3 COO - + НОН ↔ CH 3 COOН + ОН -

Видно, что в результате гидролиза CH 3 COONa в растворе образовался избыток гидроксид-ионов, и реакция среды стала щелочной (рН > 7).

Таким образом можно сделать вывод, что соли, образованные слабой кислотой и сильным основанием гидролизуются по аниону ( An n - ). При этом анионы соли связывают ионы Н + , а в растворе накапливаются ионы ОН - , что обуславливает щелочную среду (рН>7):

An n - + HOH ↔ Han (n -1)- + OH - , (при n=1 образуется HAn – слабая кислота).

Гидролиз солей, образованных двух- и трехосновными слабыми кислотами и сильными основаниями, протекает ступенчато

Рассмотрим гидролиз сульфида калия. К 2 S диссоциирует в растворе:

К 2 S ↔ 2К + + S 2- ;

К + - катион сильного основания, S 2 - анион слабой кислоты.

Катионы калия не принимают участия в реакции гидролиза, взаимодействуют с водой только анионы слабой сероводородной кислоты. В данной реакции по первой ступени происходит образование слабодиссоциирующих ионов HS - , по второй ступени – образование слабой кислоты H 2 S:

1-я ступень: S 2- + HOH ↔ HS - + OH - ;

2-я ступень: HS - + HOH ↔ H 2 S + OH - .

Образующиеся по первой ступени гидролиза ионы ОН - значительно снижают вероятность гидролиза по следующей ступени. В результате практическое значение обычно имеет процесс, идущий только по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей в обычных условиях.

Урок, проводимый с использованием тетради для практических работ И.И.Новошинского, Н.С.Новошинской к учебнику Химия 8 класс в МОУ “СОШ №11” г. Северодвинска Архангельской области учителем химии О.А.Олькиной в 8 классах (на параллели).

Цель урока: Формирование, закрепление и контроль умений учащихся определять реакцию среды растворов с помощью различных индикаторов, в том числе природных, используя тетрадь для практических работ И.И.Новошинского, Н.С.Новошинской к учебнику Химия 8 класс.

Задачи урока:

  1. Образовательные. Закрепить следующие понятия индикаторы, реакция среды (типы) , pH, фильтрат, фильтрование на основе выполнения заданий практической работы. Проверить знания учащихся, которые отражают зависимость “ раствор вещества (формула) – значение pH (числовое значение) – реакция среды”. Рассказать учащимся о способах снижения кислотности почв Архангельской области.
  2. Развивающие. Способствовать развитию логического мышления учащихся на основании анализа результатов, полученные в ходе практической работы, их обобщения, а также умения делать вывод. Подтвердить правило: практика доказывает теорию или опровергает ее. Продолжить формирование эстетических качеств личность учащихся на основе разнообразного спектра представленных растворов, а также поддержать интерес ребят к изучаемому предмету “Химия”.
  3. Воспитывающие. Продолжить формировать умения учащихся выполнять задания практической работы, придерживаясь, правил по охране труда и технике безопасности, в том числе правильно выполнять процессы фильтрования, нагревания.

Практическая работа № 6 “Определение pH среды”.

Цель для учащихся: Научится определять реакцию среды растворов разных объектов (кислот, щелочей, солей, почвенного раствора, некоторых растворов и соков), а также изучить растительные объекты как природные индикаторы.

Оборудование и реактивы: штатив с пробирками, пробка, стеклянная палочка, штатив с кольцом, фильтровальная бумага, ножницы, химическая воронка, стаканы, фарфоровая ступка с пестиком, мелкая терка, чистый песок, универсальная индикаторная бумага, испытуемый раствор, почва, кипяченая вода, плоды, ягоды и другой растительный материал, раствор гидроксида натрия и серной кислоты, хлорида натрия.

Ход урока

Ребята! Мы с вами уже познакомились с такими понятиями как реакция среды водных растворов, а также индикаторы.

Какие типы реакции среды водных растворов вы знаете?

  • нейтральная, щелочная и кислотная.

Что такое индикаторы?

  • вещества, с помощью которых можно определить реакцию среды.

Какие индикаторы вам известны?

  • в растворах: фенолфталеин, лакмус, метиловый оранжевый.
  • сухие: универсальная индикаторная бумага, лакмусовая бумага, метилоранжевая бумага

Какими способами можно определить реакцию среды водных растворов?

  • влажным и сухим.

Что такое pH среды?

  • водородный показатель ионов водорода в растворе(pH=– lg )

Давайте вспомним, какой ученый ввел понятие pH среды?

  • Датский химик Сёренсен.

Молодцы!!! Теперь откройте тетрадь для практических работ на с.21 и прочитайте задание №1 .

Задание №1.Определите pH раствора при помощи универсального индикатора.

Вспомним правила при работе с кислотами и щелочами!

Выполните опыт из задания №1.

Сделайте вывод. Таким образом, если раствор имеет pH = 7 среда нейтральная, при pH < 7 среда кислотная, при pH > 7 среда щелочная.

Задание №2.Получите почвенный раствор и определите его pH при помощи универсального индикатора.

Прочитайте задание на с.21-с.22, выполните задание по плану, результаты занесите в таблицу.

Вспомним правилами безопасности при работе с нагревательными приборами (спиртовкой).

Что такое фильтрование?

  • процесс разделение смеси, который основан на различной пропускной способности пористого материала – фильтрата по отношению к составляющим смесь частицам.

Что такое фильтрат?

  • это прозрачный раствор, получаемый после фильтрования.

Результаты оформите в виде таблицы.

Какая реакция среды почвенного раствора?

  • Кислая

Что необходимо сделать, чтобы повысить качество почвы в нашем регионе?

  • CaCO 3 + H 2 O+CO 2 = Ca(HCO 3) 2

Внесение удобрений, которые имеют щелочную реакцию среды: молотый известняк и других карбонатных минералов: мела, доломита. В Пинежском районе Архангельской области есть залежи такого минерала, как известняк, вблизи карстовых пещер, поэтому он доступен.

Сделайте вывод. Реакция среды полученного почвенного раствора pH=4,слабокислая, следовательно, для повышения качества почвы необходимо известкование.

Задание №3. Определите pH некоторых растворов и соков при помощи универсального индикатора.

Прочитайте задание на с.22, выполните задание по алгоритму, результаты занесите в таблицу.

Источник сока

Источник сока

Картофель

Силикатный клей

Капуста свежая

Столовый уксус

Капуста квашеная

Раствор питьевой соды

Апельсин

Свекла свежая

Свекла вареная

Сделайте вывод. Таким образом, разные натуральные объекты имеют разные значения pH: pH 1?7– среда кислотная (лимон, клюква, апельсин, помидор, свекла, киви, яблоко, банан, чай, картофель, капуста квашеная, кофе, силикатный клей).

pH 7?14среда щелочная(капуста свежая, раствор питьевой соды).

pH = 7 среда нейтральная(хурма, огурец, молоко).

Задание №4. Изучите растительные индикаторы.

Какие растительные объекты могут выступать в качестве индикаторов?

  • ягоды: соки, лепестки цветов: вытяжки, соки овощей: корнеплодов, листьев.
  • вещества, которые могут изменять окраску раствора в разных средах.

Прочитайте задание на с.23 и выполните его по плану.

Результаты оформите в таблицу.

Растительный материал (природные индикаторы)

Цвет раствора природного индикатора

Кислотная среда

Естественный цвет раствора (нейтральная среда)

Щелочная среда

Клюква (сок)

фиолетовый

Клубника (сок)

оранжевый

персиково – розовый

Черника (сок)

красно-фиолетовый

сине – фиолетовый

Черная смородина (сок)

красно-фиолетовый

сине – фиолетовый

Сделайте вывод. Таким образом, в зависимости от pH среды природные индикаторы: клюква (сок), клубника (сок), черника (сок), черная смородина (сок) приобретают следующие цвета: в кислой среде – красный и оранжевый цвет, в нейтральной – красный, персиково – розовый и фиолетовый цвета, в щелочной среде от розового через сине – фиолетовый до фиолетового цвета.

Следовательно, по интенсивности окраски природного индикатора можно судить по реакции среды того или иного раствора.

По окончании работы приведите в порядок рабочее место.

Ребята! Сегодня был очень необычный урок! Вам понравился?! Можно ли использовать сведения, полученные на данном уроке в повседневной жизни?

Сейчас выполните задание, которое приведено в ваших тетрадях для практических работ.

Задание для контроля. Распределите вещества, формулы которых приведены ниже, по группам в зависимости от pH их растворов: HCl, H 2 O, H 2 SO 4 , Ca (OH) 2 , NaCl, NaOH, KNO 3 , H 3 PO 4 , KOH.

pH 17– среда (кислотная) ,имеют растворы (HCl,H 3 PO 4 ,H 2 SO 4) .

pH 714 среда(щелочная), имеют растворы (Ca(OH) 2 , KOH, NaOH).

pH = 7 среда (нейтральная), имеют растворы (NaCl, H 2 O,KNO 3).

Оценка за работу_______________