Морфология и физиология микроорганизмов.

Бактерии относят к прокариотам, и долгое время из-за микроскопических размеров их морфология не была изучена на должном уровне.

Раздел микробиологии, изучающий морфологические формы бактерий, их строение, размеры, способы передвижения, размножение и спорообразование, называют морфологией. При изучении морфологических свойств необходимо учитывать то, что под влиянием различных факторов (питательная среда, температура, влажность) бактерии способны их менять.

Методы изучения бактерий

Для изучения морфологии бактерий применяют такие методы, как микроскопия и окрашивание. Наблюдение за живыми бактериями происходит с помощью световых и электронных микроскопов в неокрашенных препаратах. Для получения полной характеристики рассматриваемых бактерий применяют такие методы изучения:

  • Морфологический. Под микроскопом рассматривают морфологию бактерии, ее подвижность, споры и способы размножения.
  • Культуральный. Исследование бактерии в питательных средах. Изучают ее рост, величину, цвет колонии и скорость размножения.
  • Физиологический. Рассматривают такие свойства бактерий, как реакция на температуру, на внешние раздражители, на кислород, их способность к сбраживанию, реагирование на различные среды.

Применение этих способов изучения позволяет установить вид микроорганизма и морфологию каждого из них. Это сложный и длительный процесс, занимающий много времени.

Способ окрашивания является наиболее точным и эффективным в распознании и изучении строения бактерий под микроскопом. Зачастую микробы в своей естественной среде невидны под микроскопом, а окрашивание позволяет не только изучить морфологию бактерии, а и правильно определить ее вид. Многие бактерии имеют одинаковую морфологию, но при окрашивании дают разные цвета. Для изучения бактерий применяют такие способы окрашивания:

  • Простой. Применяют одну краску: фуксин либо метиленовую синюю.
  • Сложный. Этот способ чаще всего применяется для выявления возбудителя инфекции, включает в себя два и более красителя. Чаще на практике применяют метод окрашивания по Граму и по Цилю.
  • Дифференцированный. Для окрашивания жгутиков используют метод Бениньетти. Для индицирования капсул применяют метод Гинса.

Классификация микроорганизмов

Многообразие форм, биохимическая нестабильность и простота в строении усложняют классификацию бактерий. До сих пор их классификация является предметом споров среди микробиологов. В основу классифицирования положены такие направления в изучении микроорганизмов:

  • их морфология;
  • типы питания;
  • источник энергии;
  • реакция на окрашивание;
  • разновидности форм.

Формы бактерий

При всем многообразии бактерий выделяют три основных формы: сферические, палочковидные и извитые.

Сферическая

Сферической формой обладают кокки. По тому, как располагаются клетки, разделяют на такие группы:

  • микрококки (маленькие) – каждая клетка отдельно;
  • диплококки (два) после деления клетки существуют парами;
  • стрептококки (цепочка) после деления образуют цепочку;
  • сарцины (связка) после деления образуют связку в трех направлениях;
  • стафилококки (гроздь) делятся во всех направлениях, образуя гроздь.

Палочковидные

Палочковидные делят на группы в зависимости от формы (правильная или неправильная), от размеров и по тому, как располагаются клетки. Расположение клеток под микроскопом выглядит хаотично, потому что после деления каждая клетка живет отдельно.

Их делят на такие группы:

Извитые

Виды, имеющие извитую форму, разделяют по количеству оборотов и по характеру витков. Вибрионы имеют слегка изогнутый вид, спириллы – несколько завитков правильной формы, спирохеты – большое количество мелких завитков.

Строение клетки бактерий

Ультраструктура клетки изучается при помощи таких микроскопических методов:

  • светового;
  • люминесцентного;
  • сухого (когда между объективом и линзой есть воздух);
  • фазово-контрастного;
  • темнопольного.
  • интерференционного;
  • электронного.

Ультраструктура бактериальной клетки считается показателем ее уникальности в организационных процессах.

Различают постоянные органоиды: аналог ядра, цитоплазматическая мембрана, цитоплазма, которые свойственны каждому виду. Имеются и временные включения: капсула, пили, клеточная стенка, споры, жгутики, имеющиеся не у всех микробов или возникающие при различных воздействиях.

Нуклеоид

Нуклеоид является прототипом ядра и не содержит таких структур, свойственных эукариотам, как ядрышки, ядерная оболочка и гистоны. Он обладает свойством хранения и передачи генной информации, содержащейся в одной хромосоме, имеющей вид замкнутого кольца. Еще носителями наследственной информации бактериальной клетки являются плазмиды.

Цитоплазма

Цитоплазм представляет собой сложную систему, включающую в себя такие включения:

  • рибосомы (отвечают за синтез белков);
  • гранулы (содержат гликоген, полисахариды);
  • волютин (полифосфаты);
  • плазмиды (обладают свойством повышать устойчивость клетки).

Цитоплазматическая мембрана

Под электронным микроскопом хорошо видно, что мембрана бактериальной клетки состоит из трех слоев. При росте клетки она имеет свойство образовывать своеобразные выпячивания ─ мезосомы. В жизни клетки она выполняет такие функции:

  • барьерную;
  • энергетическую;
  • транспортную.

Капсула

Капсула является слизистой структурой с четко выраженными границами, хорошо различаемыми под микроскопом. Ее изучают с помощью окрашивания мазка, где краска вокруг нее создает темный фон. Она обладает защитными свойствами против фагоцитоза бактерий и реагирует на антитела.

Клеточная стенка

Клеточная стенка защищает бактериальную клетку и обеспечивает ее постоянную форму. Состоит из двух слоев: внешнего, обладающего свойством пластичности, и внутреннего, постоянного. Такое свойство клеточной стенки, как ее реакция на окрашивание, используется для определения видов.

Жгутики

Жгутики ─ это тонкие нити, обеспечивающие подвижность клетки микроорганизма и имеющие длину большую, чем она сама. Жгутики имеют белковую структуру, их число может колебаться от одного до тысяч. Морфология расположения у них разнообразна: от прикрепления к одному концу до прикрепления по всей поверхности.

Пили

Пили являются ворсинками, которые состоят из белкового вещества. Они выполняют такие функции:

  • прикрепление к поражаемой клетке;
  • несут ответственность за питание;
  • размножение;
  • водно-солевой обмен;
  • конъюгация (сближение).

Споры

При неблагоприятных условиях роста и развития микробы образуют споры, способствующие сохранению вида и не являющиеся продолжением рода. Наличие многослойной оболочки и вялотекущих метаболических процессов позволяет спорам долгое время находиться в стадии спокойствия и ждать подходящих условий для развития.

Появление современных методов исследования привело к новому витку в изучении царства бактерий. Ежегодно микробиологи с помощью новых методик изучают морфологию и свойства новых, еще неизученных видов микроорганизмов, неподходящих ни под один тип классификации.

При описании морфологии бактерий определённого таксона характеризуют следующие присущие ему признаки:

    окраска по Граму,

    форма бактериальной клетки,

    размер бактериальной клетки,

    наличие защитных приспособлений (капсулы, эндоспоры),

    подвижность (наличие жгутиков, их число и расположение),

    расположение бактерий в мазке.

В этой главе даны общие сведения о форме, размере и расположении бактериальных клеток в мазке; морфологические признаки, обусловленные особенностями ультраструктуры бактериальных клеток (окраска по Граму, зависящая от типа строения клеточной стенки, капсула, эндоспора и жгутики) будут описаны в главе 4.

3.2. Форма бактерий

Форма бактериальных клеток достаточно хорошо оценивается при световой микроскопии.

Рис. 3-1. Стафилококки

Рис. 3-2. Стрептококки

Рис. 3-3. Пневмококки

Рис. 3-4. Нейссерии (менингококки)

А. Подавляющие большинство прокариот, благодаря наличию жёсткой структуры - клеточной стенки – обладают определённой формой , которая хоть и может варьировать в определённых пределах, тем не менее, является достаточно стабильным морфологическим признаком. Такие бактерии относятся к отделам Firmicutes и Gracilicutes.

1. Бактерии, имеющие круглые клетки, называются кокками .

а. Форму математически идеального шара , имеют стафилококки (Рис. 3-1).

б. Овальную форму клеток имеют стрептококки (Рис. 3-2).

в. Ланцетовидную форму или, как её ещё описывают, форму горящей свечи, имеют пневмококки (Рис. 3-3).

г. Бобовидную форму имеют нейссерии (гонококки и менингококки) (Рис. 3-4).

2. Бактерии цилиндрической формы называют палочковидными или просто палочками .

а. Большинство палочек прямые (Рис. 3-5).

б. Некоторые палочки имеют изогнутую форму. Раньше такие бактерии относились к спирохетам, но последние имеют ряд принципиальных особенностей своей ультраструктуры, которые не присущи изогнутым палочкам.

1 . Один изгиб имеют вибрионы (Рис. 3-6). Их ещё сравнивают с запятыми, а холерный вибрион, мо имени первооткрывателя, называют «запятой Коха».

Рис. 3-6. Вибрионы

2 . Кампилобактеры (Рис.3-7) и геликобактеры (Рис. 3-8) имеют два-три изгиба . Из-за такой формы и ещё принимая во внимание их расположение в мазке, эти бактерии характеризуют как «крыло чайки».

в. Отдельную группу составляют ветвящиеся и способные к ветвлению бактерии. Типичным представителем их являются актиномицеты (Рис. 3-9). Способны к ветвлению микобактерии и коринебактерии . Эта группа называется также бактерии актиномицетного ряда .

3. Извитые формы бактерий обладают особенностями ультраструктуры, придающими им вид кручёной нити. Более подробно о них будет сказано ниже. К этой группе относятся спирохеты – трепонемы, лептоспиры, боррелии (Рис. 3-10).

Б. Особая группа бактерий не имеет определённой формы . Речь идёт о микоплазмах (Рис. 3-11). Эти бактерии лишены клеточной стенки, а именно она играет у прокариот формообразующую роль. Микоплазмы выделены в особый отдел – Tenericutes.

Эукариоты и прокариоты . Большинство микроорганизмов - одноклеточные существа. Микробная клетка отделена от внешней среды клеточной стенкой, а иногда лишь цитоплазматической мембраной и содержит различные субклеточные структуры. Существуют два основных типа клеточного строения, которые отличаются друг от друга рядом фундаментальных признаков. Это эукариотические и прокариотические клетки. Микроорганизмов, имеющих истинное ядро, называют эукариотами (эу - от греч. истинный, карио - ядро). Микроорганизмы с примитивным ядерным аппаратом относятся к прокариотам (доядерным).

К эукариотам принадлежат грибы, водоросли и простейшие. По строению они сходны с растительными и животными клетками. Бактерии и сине-зеленые водоросли (цианобактерии) относят к прокариотам.

В эукариотической клетке имеется ядро, отделенное от окружающей его цитоплазмы двухслойной ядерной мембраной с порами. В ядре находятся 1-2 ядрышка - центры синтеза рибосомальной РНК и хромосомы - основные носители наследственной информации, состоящие из ДНК и белка. При делении хромосомы распределяются между дочерними клетками в результате сложных процессов - митоза и мейоза. Цитоплазма эукариот содержит митохондрии, а у фотосинтезирующих организмов - и хлоропласты. Цитоплазматическая мембрана, окружающая клетку, переходит внутри цитоплазмы в эндоплазматическую сеть; имеется также мембранная органелла - аппарат Гольджи.

Прокариотические клетки устроены проще. В них нет четкой границы между ядром и цитоплазмой, отсутствует ядерная мембрана. ДНК в этих клетках не образует структур, похожих на хромосомы эукариот. Поэтому у прокариот не происходят процессы митоза и мейоза. Большинство прокариот не образует внутриклеточных органелл, ограниченных мембранами.

Кроме того, в прокариотических клетках нет митохондрий и хлоропластов.

Ниже рассматривается строение только прокариотической (бактериальной) клетки, так как строение эукариотической клетки освещено в соответствующих курсах ботаники и зоологии.

Форма бактерий . Бактерии, как правило, являются одноклеточными организмами, клетка их имеет довольно простую форму, представляет собой шар или цилиндр, иногда изогнутый. Размножаются бактерии преимущественно делением на две равноценные клетки.

Бактерии шаровидной формы называются кокками (лат, coccus - зерно) и могут быть сферическими, эллипсоидальными, бобовидными и ланцетовидными.

По расположению клеток относительно друг друга после деления кокки подразделяют на несколько форм. Если после деления клетки расходятся и располагаются поодиночке, то такие формы называют монококками. Иногда кокки при делении образуют скоплений, напоминающие виноградную гроздь. Подобные формы относятся к стафилококкам. Кокки, остающиеся после деления в одной плоскости связанными парами, называются диплококками, а образующие различной длины цепочки - стрептококками (рис. 1, 2). Сочетания из четырех кокков, появляющиеся после деления клетки в двух взаимно перпендикулярных плоскостях, представляют собой тетракокки. Некоторые кокки делятся в трех взаимно перпендикулярных плоскостях, что приводит к образованию своеобразных скоплений кубической формы, называемых сардинами.

Большинство бактерий имеют цилиндрическую, или палочковидную, форму. Раньше все палочковидные формы назывались бациллами (лат. bacillum - маленькая палочка). После 1875 г.,когда немецкий ботаник Ф. Кон открыл существование спор так называемой сенной палочки, палочковидные формы бактерий, образующие споры, стали именовать бациллами, а не образующие споры - бактериями.

Палочковидные бактерии различаются по форме, размеру в длину и в поперечнике, форме концов клетки, а также по взаимному расположению. Они могут иметь цилиндрическую форму с прямыми концами или овальную - с закругленными или заостренными концами. Бактерии бывают также слегка изогнутыми, встречаются нитевидные и ветвящиеся формы (например, микобактерии и актиномицеты).

В зависимости от взаимного расположения отдельных клеток после деления палочковидные бактерии делят на собственно палочки (одиночное расположение клеток), диплобактерии или диплобациллы (парное расположение клеток), стрептобактерии или стрептобациллы (образуют цепочки различной длины).

Нередко встречаются извитые, или спиралевидные, бактерии.

К этой группе относятся спириллы (от лат. spira - завиток), имеющие форму длинных изогнутых (от 4 до 6 витков) палочек, и вибрионы (лат. vibrio - изгибаюсь), представляющие собой лишь 1/4 часть витка спирали, похожие на запятую (рис. 3).

Известны нитевидные формы бактерий, обитающие в водоемах. Кроме перечисленных, встречаются многоклеточные бактерии, несущие на поверхности клетки протоплазм этические выросты - простеки, треугольные и звездообразные бактерии, а также имеющие форму замкнутого и незамкнутого кольца и червеобразные бактерии.

Размеры бактерий. Клетки бактерий очень малы. Их измеряют в микрометрах, а детали тонкой структуры - в нанометрах. Кокки обычно имеют диаметр около 0,5-1,5 мкм. Ширина палочковидных (цилиндрических) форм бактерий в большинстве случаев колеблется от 0,5 до 1 мкм, а длина равняется нескольким микрометрам (2-10). Мелкие палочки имеют ширину 0,2-0,4 и длину 0,7-1,5 мкм. Среди бактерий могут встречаться и настоящие гиганты, длина которых достигает десятков и даже сотен микрометров. Формы и размеры бактерий значительно изменяются в зависимости от возраста культуры, состава среды и ее осмотических свойств, температуры и других факторов.

Из трех основных форм бактерий кокки наиболее стабильны по размерам, палочковидные бактерии более изменчивы, причем особенно значительно меняется длина клеток.

Бактериальная клетка, помещенная на поверхность твердой питательной среды, растет, делится, образуя колонию бактерий-потомков. Через несколько часов роста колония состоит уже из такого большого числа клеток, что ее можно видеть невооруженным глазом. Колонии могут иметь слизистую или пастообразную консистенцию, в некоторых случаях они бывают пигментированы. Иногда внешний вид колоний настолько характерен, что позволяет без особых трудностей провести идентификацию микроорганизмов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Морфология микроорганизмов

К микроорганизмам относят микроскопические живые существа, не образующие хлорофилл, в том числе бактерии, грибы (плесени, дрожжи, актиномицеты).

Большинство микробов одноклеточные и лишь некоторые из них являются многоклеточными. К группе одноклеточных относятся бактерии, простейшие, дрожжи, отдельные виды плесневых грибов, а к группе многоклеточных - нитчатые бактерии и большинство плесеней. Вирусы не имеют клеточной структуры в отличие от других микроорганизмов.

Бактерии. Форма и размер бактерий. По внешнему виду различают три основные формы бактерий: шаровидную (кокки), палочковидную (цилиндрические) и извитую (рис. 8).

Рис. 8. Основные формы бактерий: 1 - микрококки; 2 - диплококки; 3 - стрептококки; 4 - тетракокки; 5 -сарцины; 6 - стафилококки; 7 - бациллы; 8 - бактерии; 9 - стрептобактерии; 10 - вибрионы; 11 - спириллы; 12 - спирохеты

Размеры бактерий могут колебаться в зависимости от условий обитания и влияния внешней среды (питание, температура, влажность и др.). Размер кокковидных форм колеблется в пределах от 0,75 до 2 мкм, палочковидных от 0,3-1 до 2-10 и извитых от 0,1-0,15 до 3-20 мкм.

Кокки - большинство их имеет правильную форму шара, но некоторые виды вытянуты и напоминают свечу, ланцет, бобы. В зависимости от взаимного расположения клеток (после деления) кокки подразделяются на микрококки - одиночные, беспорядочно расположенные кокки; диплококки - располагаются попарно; стрептококки - образуют цепочку при делении кокков в одной плоскости; тетракокки - сочетания по четыре кокка; сарцины - кокки, соединенные в виде пакетов, и стафилококки - скопления кокков, напоминающие грозди винограда.

Палочковидные бактерии - форма может быть в виде цилиндра, овоида различной длины и диаметра. Концы палочек закругленные, заостренные или резко обрубленные. Палочки, образующие споры, называются бациллами, не образующие споры - бактериями. Палочки, располагающиеся попарно, получили название диплобактерии, или диплобациллы, а располагающиеся в цепочку, - стрептобактерии, или стрептобациллы.

Извитые бактерии - это микроорганизмы, имеющие вид спирали. Они подразделяются на вибрионы, напоминающие слегка изогнутую запятую, спириллы, имеющие несколько крупных завитков, и спирохеты - бактерии с тонкими многочисленными завитками.

Строение бактериальной клетк и . Ультраструктуру бактерий изучают с помощью электронно-микроскопических и микрохимических исследований, которые позволяют довольно точно определить структуру и составные части микробной клетки. Бактериальная клетка состоит из оболочки, цитоплазмы, ядерного вещества (рис.9).

Оболочка обладает значительной прочностью, упругостью, эластичностью, и благодаря этому создается как бы жесткий каркас микробной клетки, предохраняющий ее от неблагоприятных внешних воздействий и придающий ей постоянную форму (кокки, палочки). Оболочка имеет мельчайшие поры, она полупроницаема, через нее происходит обмен веществ с внешней средой.

Химический состав оболочки неоднороден: в ее составе обнаруживают азотистые и безазотистые соединения.

Оболочка бактерий представлена тремя структурами: внешним капсульным слоем, клеточной стенкой и цитоплазматической мембраной.

Рис. 9. Строение бактериальной клетки: 1 - оболочка; 2 - цитоплазма; 3 - ядерная структура

Цитоплазма представляет собой дисперсную смесь коллоидов, состоящую из белков, воды, РНК (рибонуклеиновая кислота), липоидов, углеводов, минеральных веществ и др. Цитоплазма окружена тонкой цитоплазматической мембраной, состоящей из липопротеиновых и рибонуклеиновых компонентов. С цитоплазматической мембраной связаны ферментные системы, принимающие участие в обмене веществ с окружающей средой.

Цитоплазма содержит различные включения, наполненные клеточным соком, которые являются запасным питательным субстратом. В цитоплазме постоянно происходят процессы синтеза и распада веществ, т.е. осуществляются все функции, присущие живому организму.

Ядерное вещество бактериальной клетки, представленное ДНК (дезоксирибонуклеиновая кислота) в виде овальных и мелкозернистых включений, распределено в цитоплазме диффузно. Вокруг ДНК нуклеоида в цитоплазме бактерий расположены короткие двухцепочечные нити внехромосомной ДНК, получившие название плазмиды. Они управляют функцией устойчивости к лекарственным препаратам (R-плазмиды), выработки энтеротоксинов и обуславливают внехромосомную передачу наследственных свойств.

Некоторые виды бактерий образуют споры и капсулы (рис. 10). Капсула является продуктом набухания и ослизнения оболочки клетки; она предохраняет бактерии от влияния неблагоприятных факторов. При неблагоприятных условиях внутри некоторых палочковидных бактерий образуются округлые тельца - споры.

Спорообразующие палочки (бациллы) могут существовать в двух формах: вегетативной, т.е. способной к росту и размножению, и споровой, неспособной к размножению. Спора представляет собой микробную клетку, потерявшую большое количество воды и покрывшуюся плотной оболочкой. Внутри микробной клетки образуется только одна спора, которая служит для сохранения вида. Если диаметр спор превышает поперечник микробной клетки, - это клостридии (например, возбудитель столбняка).

Рис. 10. Споры и капсулы бактерий: а - споры; б - капсулы

При благоприятных условиях (наличие влаги, питательных веществ и оптимальной температуры) спора прорастает и превращается в вегетативную форму. Споры чрезвычайно устойчивы к воздействию неблагоприятных внешних факторов (высушивание, действие высоких и низких температур и др.) и могут сохраняться годами.

Подвижность бактерий. Многие виды бактерий могут самостоятельно передвигаться с помощью специальных жгутиков. Жгутики представляют собой тонкие длинные нити, в несколько раз превышающие длину тела бактерий. Диаметр жгутиков около 1/20 ширины бактериальной клетки. Извитые формы микробов передвигаются путем сокращения тела. Микробы, не имеющие жгутиков и не являющиеся извитыми, неподвижны.

Грибы. Грибы - это большая группа растительных организмов. Они характеризуются тремя основными свойствами: размножаются вегетативным путем и посредством спор; имеют вегетативное тело в виде мицелия; в грибах отсутствует хлорофилл (в отличие от растений). Наиболее широко в природе распространены плесневые грибы, дрожжи, актиномицеты. Некоторые виды плесеней и дрожжей используют в пищевой промышленности для технологических целей, некоторые же из грибов вызывают порчу продуктов и являются возбудителями заболеваний человека и животных.

Плесени. Иногда их называют микроскопические грибы. Это неподвижные бесхлорофилловые организмы, видимые невооруженным глазом. Плесневые грибы имеют более сложное строение, чем бактерии (рис. 11). Плесневой гриб состоит из переплетающихся между собой нитей (гиф), которые образуют тело гриба (мицелий). Гифы могут быть одноклеточными и многоклеточными. Каждая клетка гифы имеет оболочку, цитоплазму с включениями и несколько отдельных ядер.

Рис. 11. Плесневые грибы: 1 - кистевидная плесень (пенициллиум); 2 - леечная плесень (аспергиллюс); 3 - головчатая плесень (мукор); 4 - гроздевидная плесень; 5 - шоколадная плесень, 6 - молочная плесень.

Плесневой гриб состоит из переплетающихся между собой нитей (гиф), которые образуют тело гриба (мицелий). Гифы могут быть одноклеточными и многоклеточными. Каждая клетка гифы имеет оболочку, цитоплазму с включениями и несколько отдельных ядер.

К одноклеточным плесневым грибам относится головчатая плесень (мукор). Тело ее состоит из одной разветвленной клетки. Плодоносящий гиф, на котором находятся споры, называется спорангиеносец. Некоторые виды мукоровых грибов используют в пищевой промышленности для приготовления органических кислот и спирта. Многие виды мукора вызывают порчу продуктов.

К многоклеточным плесневым грибам относятся пенициллиум, аспергиллюс, гроздевидная, шоколадная и другие плесени. У этих видов плесеней мицелий имеет перегородки (септы), споры получили название конидий, а плодоносящий гиф - конидиеносец. У молочной плесени споры называются оидии.

Некоторые многоклеточные плесени являются продуцентами антибиотиков - пенициллина, аспергиллина, используются в промышленности для приготовления ферментных препаратов, лимонной кислоты. В то же время такая плесень, как аспергиллюс, вызывает аспергиллез - поражение верхних дыхательных путей. Многие из плесеней вызывают порчу мясных и молочных продуктов. Так кандидиум придает мясу неприятный запах, расщепляя белки, шоколадная плесень образует на мясе темные, почти черные пятна.

Дрожжи. Это неподвижные одноклеточные организмы округлой, овальной или палочковидной формы, размером от 8 до 15 мкм. Дрожжевая клетка имеет оболочку, цитоплазматическую мембрану, цитоплазму с включениями, ядро круглой или овальной формы. В цитоплазме дрожжевой клетки находятся вакуоли - внутриклеточные образования, содержащие питательные вещества и различные включения в виде зерен. В природе встречаются дрожжи спорообразующие и неспорообразующие. Некоторые виды дрожжей используют в пищевой промышленности для приготовления хлеба, пива, вина, кумыса и др. Есть дрожжевые организмы, которые вызывают пороки молочных и мясных продуктов, например дрожжи из рода родоторула, микодерма, пастерианум. Дрожжеподобные организмы родов кандида и бластомицесс вызывают заболевания: кандидомикоз, бластомикоз с поражением глаз, ногтей, сухожилий, суставов, слизистой оболочки полости рта, дыхательных путей, пищеварительного тракта.

Актиномицеты (лучистые грибы). Актиномицеты занимают промежуточное положение между плесневыми грибами и бактериями. Их тело состоит из довольно длинных ветвящихся тонких одноклеточных нитей (гиф). Длина актиномицетов может достигать нескольких сантиметров. Клетки актиномицетов имеют оболочку, цитоплазму и ядро. Сплетение гиф образует воздушный мицелий, который растет над питательной средой и образует спороносцы, на них - споры, посредством которых актиномицеты размножаются. Некоторые актиномицеты вызывают порчу пищевых продуктов; есть патогенные, вызывающие заболевание, известное под названием актиномикоз. микроорганизм бактериальный клетка морфология

Актиномицеты являются продуцентами таких антибиотиков, как стрептомицин, тетрациклин, биомицин и др.

Размещено на Allbest.ru

Подобные документы

    Систематика микроорганизмов по фенотипическим, генотипическим и филогенетическим признакам. Отличия прокариот и эукариот, анатомия бактериальной клетки. Морфология микроорганизмов: кокки, палочки, извитые и нитевидные формы. Генетическая система бактерий.

    презентация , добавлен 13.09.2015

    История микроскопа и изучение морфологии микроорганизмов как собирательной группы живых организмов: бактерии, археи, грибы, протисты. Формы, размер, морфология и строение бактерий, их классификация и химический состав. Строение и классификация грибов.

    реферат , добавлен 05.12.2010

    Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.

    лекция , добавлен 12.10.2013

    Систематика - распределение микроорганизмов в соответствии с их происхождением и биологическим сходством. Морфология бактерий, особенности строения бактериальной клетки. Морфологическая характеристика грибов, актиномицетов (лучистых грибов) и простейших.

    реферат , добавлен 21.01.2010

    Исследование морфологических признаков бактерий, микроскопических грибов и дрожжей. Изучение внешнего вида, формы, особенностей строения, способности к движению, спорообразованию, способов размножения микроорганизмов. Форма и строение дрожжевой клетки.

    реферат , добавлен 05.03.2016

    Схожесть и отличия прокариотических и эукариотических клеток. Строение муреина у бактерий. Характеристика микроорганизмов по способам питания. Химическое строение, структурная организация вирусов, морфология, особенности взаимодействия с клеткой-хозяином.

    шпаргалка , добавлен 23.05.2009

    Химический состав бактериальной клетки. Особенности питания бактерий. Механизмы транспорта веществ в бактериальную клетку. Типы биологического окисления у микроорганизмов. Репродукция и культивирование вирусов. Принципы систематики микроорганизмов.

    презентация , добавлен 11.11.2013

    Исторические сведения об открытии микроорганизмов. Микроорганизмы: особенности строения и форма, движение, жизнедеятельность. Строение клетки, доклеточные формы жизни – вирусы. Экология бактерий, селекция микроорганизмов, их распространение в природе.

    реферат , добавлен 26.04.2010

    Группа микроскопических одноклеточных организмов-прокариотов. Микроскопические методы исследования микроорганизмов. Формы, строение и химический состав бактериальной клетки. Функции поверхностных структур. Дыхание, питание, рост и размножение бактерий.

    презентация , добавлен 24.01.2017

    Изменчивость (биологическая)- разнообразие признаков и свойств у особей и групп особей любой степени родства, ее формы. Генетическая рекомбинация и трансформация. Изменчивость фагов и микроорганизмов. Практическое применение изменчивости микроорганизмов.

Микроорганизмы (от лат. micros - малый) - организмы, невидимые невооруженным глазом. К ним относятся простейшие, спирохеты, грибы, бактерии, вирусы, изучением которых занимается микробиология. Величина микроорганизмов измеряется в микрометрах (мкм). В микромире существует большое разнообразие форм, которые делятся на группы с учетом общих принципов биологической классификации.

Первой общей биологической классификацией была созданная в XVIII веке система шведского ученого К. Линнея, основанная на морфологических признаках и включавшая животный и растительный мир. С развитием науки в классификации стали учитывать не только морфологические, но и физиологические, биохимические и генетические особенности микроорганизмов. В настоящее время невозможно говорить об единой классификации всех живых организмов: сохраняя единые принципы, классификации макро- и микроорганизмов имеют свои особенности.

Основными ступенями всех классификаций являются: царство - отдел - класс (группа) - порядок - семейство - род - вид. Главной классификационной категорией является вид - совокупность организмов, имеющих общее происхождение, сходные морфологические и физиологические признаки и обмен веществ.

Микроорганизмы относятся к царству прокариотов, представители которых, в отличие от эукариотов, не обладают оформленным ядром. Наследственная информация у прокариотов заключена в молекуле ДНК, располагающейся в цитоплазме клетки.

Для микроорганизмов принята в 1980 г. единая международная классификация, в основе которой лежит система, предложенная американским ученым Берги.

Для того чтобы определить, к какому виду относится микроорганизм, необходимо с помощью различных методов изучить его особенности (форму клетки, спорообразование, подвижность, ферментативные свойства) и по определителю найти его систематическое положение - идентифицировать.

Внутри вида существуют варианты: морфоварианты отличаются по морфологии, биоварианты - по биологическим свойствам, хемоварианты - по ферментативной активности, сероварианты - по антигенной структуре, фаговарианты - по чувствительности к фагам.

Для обозначения микроорганизмов принята общебиологическая бинарная или биноминальная (двойная) номенклатура, введенная К.Линнеем. Первое название обозначает род и пишется с прописной буквы. Второе название обозначает вид и пишется со строчной буквы. Например, Staphylococcus aureus - стафилококк золотистый. В названиях могут быть отражены имена исследователей, открывших микроорганизмы: бруцеллы - в честь Брюса, эшерихии - в честь Эшериха и т. д. В ряд наименований включены органы, которые поражает данный микроорганизм: пневмококки - легкие, менингококки - мозговую оболочку и т. д.

Бактерии

Бактерии - это одноклеточные организмы, лишенные хлорофилла. Средние размеры бактериальной клетки - 2-6 мкм. Размеры и форма клеток бактерий, присущие микроорганизмам определенного вида, могут изменяться под влиянием различных факторов (в зависимости от возраста бактериальной культуры, среды обитания и пр). Это явление называется полиморфизмом.

По форме клетки бактерии делятся на три группы: шаровидные, палочковидные и извитые (рис. 4).

Шаровидные бактерии называются кокки (от лат. coccus - ягода) и имеют диаметр клетки от 0,5 до 1 мкм. Форма кокков разнообразна: сферическая, ланцетовидная, бобовидная. По взаимному расположению клеток после деления среди кокков выделяют: микрококки (от лат. micros - малый) - клетки делятся в разных плоскостях и располагаются поодиночке; диплококки (от лат. diploos - двойной) - клетки делятся в одной плоскости и затем располагаются попарно; к ним относятся ланцетовидные пневмококки и бобовидные гонококки и менингококки; стрептококки (от лат. streptos - цепочка) - клетки делятся в одной плоскости и не расходятся, образуя цепочку; стафилококки (от лат. staphyle - гроздь) - клетки делятся в различных плоскостях, образуя скопления в виде грозди винограда; тетракокки (от лат. tetra - четыре) - клетки делятся в двух взаимно перпендикулярных плоскостях и располагаются по четыре; сарцины (от лат. sarcio - соединяю) - клетки делятся в трех взаимно перпендикулярных плоскостях и располагаются в виде тюков или пакетов по 8 или 16 клеток в каждом.

Кокки широко распространены во внешней среде, а также в организме человека и животных. Почти все группы кокков, исключая микрококки, тетракокки и сарцины, включают возбудителей инфекционных заболеваний.

Палочковидные формы называются бактериями. Средние размеры их от 1 до 6 мкм в длину и от 0,5 до 2 мкм в толщину.

Бактерии различаются по внешнему виду: концы их могут быть закругленными (кишечная палочка), обрубленными (возбудитель сибирской язвы), заостренными (возбудитель чумы) или утолщенными (возбудитель дифтерии). После деления бактерии могут располагаться попарно - диплобактерии (клебсиеллы), цепочкой (возбудитель сибирской язвы), иногда под углом друг к другу или крест-накрест (возбудитель дифтерии). Большинство бактерий располагается беспорядочно.

Среди бактерий встречаются изогнутые формы - вибрионы (возбудитель холеры).

К извитым формам относятся спириллы и спирохеты. Форма их клетки напоминает спираль. Большинство спирилл неболезнетворны.

Строение бактериальной клетки

Для изучения строения бактериальной клетки наряду со световым микроскопом применяют электронно-микроскопические и микрохимические исследования, позволяющие определить ультраструктуру бактериальной клетки.

Бактериальная клетка (рис. 5) состоит из следующих частей: трехслойной оболочки, цитоплазмы с различными включениями и ядерного вещества (нуклеоида). Дополнительными структурными образованиями являются капсулы, споры, жгутики, пили.

Оболочка клетки состоит из наружного слизистого слоя, клеточной стенки и цитоплазматической мембраны.

Слизистый капсульный слой находится снаружи клетки и выполняет защитную функцию.

Клеточная стенка - один из основных структурных элементов клетки, сохраняющий ее форму и отделяющий клетку от окружающей среды. Важным свойством клеточной стенки является избирательная проницаемость, которая обеспечивает проникновение в клетку необходимых питательных веществ (аминокислот, углеводов и др.) и выведение из клетки продуктов обмена. Клеточная стенка сохраняет внутри клетки постоянное осмотическое давление. Прочность стенки обеспечивает муреин, вещество полисахаридной природы. Некоторые вещества разрушают клеточную стенку, например лизоцим.

Бактерии, полностью лишенные клеточной стенки, называются протопластами. Они сохраняют способность к дыханию, делению, синтезу ферментов; к воздействию внешних факторов: механическому повреждению, осмотическому давлению, аэрации и др. Сохранить протопласты можно только в гипертонических растворах.

Бактерии с частично разрушенной клеточной стенкой называются сферопластами. Если подавить процесс синтеза клеточной стенки с помощью пенициллина, то образуются L-формы, которые у всех видов бактерий представляют шаровидные крупные и мелкие клетки с вакуолями.

Цитоплазматическая мембрана плотно прилегает к клеточной стенке с внутренней стороны. Она очень тонкая (8-10 нм) и состоит из белков и фосфолипидов. Это пограничный полупроницаемый слой, через который осуществляется питание клетки. В мембране находятся ферменты пермеазы, осуществляющие активный перенос веществ, и ферменты дыхания. Цитоплазматическая мембрана образует мезосомы, принимающие участие в делении клетки. При помещении клетки в гипертонический раствор мембрана может отделиться от клеточной стенки.

Цитоплазма - внутреннее содержимое бактериальной клетки. Она представляет собой коллоидную систему, состоящую из воды, белков, углеводов, липидов, различных минеральных солей. Химический состав и консистенция цитоплазмы изменяются в зависимости от возраста клетки и условий окружающей среды. В цитоплазме находятся ядерное вещество, рибосомы и различные включения.

Нуклеоид, ядерное вещество клетки, ее наследственный аппарат. Ядерное вещество прокариотов в отличие от эукариотов не имеет собственной мембраны. Нуклеоид зрелой клетки представляет собой двойную нить ДНК, свернутую в кольцо. В молекуле ДНК закодирована генетическая информация клетки. По генетической терминологии ядерное вещество получило название генофор или геном.

Рибосомы находятся в цитоплазме клетки и выполняют функцию синтеза белка. В состав рибосомы входит 60% РНК и 40% белка. Количество рибосом в клетке достигает 10000. Соединяясь вместе, рибосомы образуют полисомы.

Включения - гранулы, содержащие различные запасные питательные вещества: крахмал, гликоген, жир, волютин. Они расположены в цитоплазме.

Клетки бактерий в процессе жизнедеятельности образуют защитные органеллы - капсулы и споры.

Капсула - внешний уплотненный слизистый слой, примыкающий к клеточной стенке. Это защитный орган, который появляется у некоторых бактерий при попадании их в организм человека и животных. Капсула предохраняет микроорганизм от защитных факторов организма (возбудители пневмонии и сибирской язвы). Некоторые микроорганизмы имеют постоянную капсулу (клебсиеллы).

Споры встречаются только у палочковидных бактерий. Они образуются при попадании микроорганизма в неблагоприятные условия внешней среды (действие высоких температур, высыхание, изменение рН, уменьшение количества питательных веществ в среде и т. д.). Споры находятся внутри бактериальной клетки и представляют уплотненный участок цитоплазмы с нуклеоидом, одетый собственной плотной оболочкой. По химическому составу они отличаются от вегетативных клеток малым количеством воды, увеличенным содержанием липидов и солей кальция, что способствует высокой устойчивости спор. Спорообразование происходит в течение 18-20 ч; при попадании микроорганизма в благоприятные условия спора в течение 4-5 ч прорастает в вегетативную форму. В бактериальной клетке образуется только одна спора, следовательно, споры не являются органами размножения, а служат для переживания неблагоприятных условий.

Спорообразующие аэробные бактерии называются бациллами, а анаэробные - клостридиями.

Споры отличаются по форме, размерам и расположению в клетке. Они могут располагаться центрально, субтерминально и терминально (рис. 6). У возбудителя сибирской язвы спора располагается центрально, ее размер не превышает поперечника клетки. Спора возбудителя ботулизма расположена ближе к концу клетки - субтерминально и превышает ширину клетки. У возбудителя столбняка округлая спора располагается на конце клетки - терминально и значительно превышает ширину клетки.

Жгутики - органы движения, характерны для палочковидных бактерий. Это тонкие нитевидные фибриллы, состоящие из белка - флагеллина. Длина их значительно превышает длину бактериальной клетки. Жгутики отходят от базального тельца, расположенного в цитоплазме, и выходят на поверхность клетки. Наличие их можно обнаружить по определению подвижности клеток под микроскопом, в полужидкой питательной среде или при окраске специальными методами. Ультраструктура жгутиков изучена в электронном микроскопе. По расположению жгутиков бактерии делят на группы (см. рис. 6): монотрихи - с одним жгутиком (возбудитель холеры); амфитрихи - с пучками или единичными жгутиками на обоих концах клетки (спириллы); лофотрихи - с пучком жгутиков на одном конце клетки (фекальный щелочеобразователь); перитрихи - жгутики расположены по всей поверхности клетки (кишечные бактерии). Скорость движения бактерий зависит от количества и расположения жгутиков (наиболее активны монотрихи), от возраста бактерий и влияния окружающих факторов.

Пили или фимбрии - ворсинки, расположенные на поверхности бактериальных клеток. Они короче и тоньше жгутиков и также имеют спиральную структуру. Состоят пили из белка - пилина. Одни пили (их несколько сотен) служат для прикрепления бактерий к клеткам животных и человека, с другими (единичными) связана передача генетического материала из клетки в клетку.

Микоплазмы

Микоплазмы - клетки, не имеющие клеточной стенки, но окруженные трехслойной липопротеидной цитоплазматической мембраной. Микоплазмы могут быть сферической, овальной формы, в виде нитей и звезд. Микоплазмы по классификации Берги выделены в отдельную группу. В настоящее время этим микроорганизмам уделяется все большее внимание как возбудителям заболеваний воспалительного характера. Размеры их различны: от нескольких микрометров до 125-150 нм. Мелкие микоплазмы проходят через бактериальные фильтры и называются фильтрующимися формами.

Спирохеты

Спирохеты (см. рис. 52) (от лат. speira - изгиб, chaite - волосы) - тонкие, извитые, подвижные одноклеточные организмы, имеющие размеры от 5 до 500 мкм в длину и 0,3-0,75 мкм в ширину. С простейшими их роднит способ движения путем сокращения внутренней осевой нити, состоящей из пучка фибрилл. Характер движения спирохет различен: поступательное, вращательное, сгибательное, волнообразное. В остальном строение клетки типичное для бактерий. Некоторые спирохеты слабо окрашиваются анилиновыми красителями. Спирохеты разделяют на роды по количеству и форме завитков нити и ее окончанию. Кроме сапрофитных форм, распространенных в природе и организме человека, среди спирохет имеются болезнетворные - возбудители сифилиса и других заболеваний.

Риккетсии

Вирусы

Среди вирусов выделяют группу фагов (от лат. phagos - пожирающий), вызывающих лизис (разрушение) клеток микроорганизмов. Сохраняя присущие вирусам свойства и состав, фаги отличаются структурой вириона (см. главу 8). Они не вызывают заболеваний человека и животных.

Контрольные вопросы

1. Расскажите о классификации микроорганизмов.

2. Назовите основные свойства представителей царства прокариотов.

3. Перечислите и охарактеризуйте основные формы бактерий.

4. Назовите основные органеллы клетки и их назначение.

5. Дайте краткую характеристику основных групп бактерий и вирусов.

Изучение морфологии микроорганизмов

Для изучения морфологии микроорганизмов применяют микроскопический метод исследования. Важным условием успешного использования этого метода является правильное приготовление мазка из исследуемого материала или бактериальной культуры. Культурой называются микроорганизмы, выращенные на питательных средах в лабораторных условиях.

Техника приготовления мазка

Для работы необходимо иметь чистые и обезжиренные предметные и покровные стекла. Новые стекла кипятят 15-20 мин в 2-5% растворе соды или мыльной воде, споласкивают водой и помещают в слабую хлороводородную кислоту, затем тщательно промывают водой.

Стекла, бывшие в употреблении и загрязненные красителями или иммерсионным маслом, можно обработать двумя способами: 1) погрузить на 2 ч в концентрированную серную кислоту или хромовую смесь, а затем тщательно промыть; 2) кипятить 30-40 мин в 5% растворе соды или щелочи. Необработанные стекла можно обезжирить, натерев их мылом, а затем очистить от него сухой тканью.

Внимание! Если стекло хорошо обезжирено, то капля воды растекается на нем равномерно, не распадаясь на мелкие капли.

Хранят стекла в сосудах с притертыми пробками в смеси Никифорова (равные объемы спирта и эфира) или в 96% спирте. Из растворов стекла извлекают пинцетом.

Внимание! При работе стекла держат пальцами за грани.

Материал для исследования наносят на предметное стекло бактериальной петлей, иглой или пастеровской пипеткой. Чаще всего применяют бактериальную петлю (рис. 7), сделанную из платиновой или нихромовой нити длиной 5-6 см. Петлю закрепляют в петледержателе или впаивают в стеклянную палочку. Конец проволоки сгибают в виде кольца размером 1×1,5 или 2×3 мкм.

Внимание! Правильно приготовленная петля при погружении в воду и извлечении оттуда сохраняет водную пленку.

Перед приготовлением мазка рабочую часть петли прожигают в пламени горелки в вертикальном положении: сначала саму петлю, а затем металлический стержень. Эту манипуляцию проводят и после окончания посева.

Приготовление мазка из культуры, выращенной на жидкой питательной среде . Обезжиренное предметное стекло прожигают в пламени горелки и охлаждают. На предметное стекло, помещенное на подставку (чашку Петри, штатив), наносят культуру. Пробирку с культурой держат большим и указательным пальцами левой руки. Петлю держат в правой руке. Не выпуская петли, мизинцем правой руки прижимают пробку к ладони и осторожно вынимают ее из пробирки. Движения должны быть плавными и спокойными. Горло пробирки обжигают в пламени горелки. Вводят петлю в пробирку. Охлаждают петлю о стенку пробирки и затем погружают ее в культуру. Вынимают петлю, не касаясь ею стенок пробирки. Закрывают пробку, предварительно проведя ее через пламя горелки. Ставят пробирку в штатив. Петлей наносят культуру на предметное стекло, круговыми движениями равномерно распределяя ее. Затем петлю прожигают в пламени горелки. Мазок оставляют для высыхания.

Внимание! Мазок должен быть равномерно растертым, тонким и небольшим (с двухкопеечную монету).

Приготовление мазка из культуры, выращенной на плотной питательной среде . На подготовленное предметное стекло наносят пастеровской пипеткой или петлей каплю изотонического раствора натрия хлорида (0,9%). Культуру осторожно снимают петлей с агара в пробирке или чашке Петри и эмульгируют в капле на стекле. Приготовленный мазок должен быть равномерным и не густым. При его высыхании на предметном стекле остается слабый налет.

Приготовление мазка из гноя или мокроты . Материал забирают стерильной пипеткой или петлей и наносят на середину предметного стекла. Вторым предметным стеклом покрывают первое так, чтобы свободными остались треть первого и второго стекол. Стекла с усилием раздвигают в стороны. Получают два больших мазка.

Приготовление мазка из крови . Каплю крови наносят на предметное стекло на расстоянии одной трети от левого края. Затем краем специально отшлифованного стекла, наклонив его под углом 45°, прикасаются к капле крови. Прижимая отшлифованное стекло к предметному продвигают его вперед. Правильно приготовленный мазок имеет желтоватый цвет и просвечивает.

Приготовление мазков-отпечатков из внутренних органов трупов и пищевых продуктов твердой консистенции . Поверхность органа или пищевого продукта прижигают раскаленным скальпелем и из этого участка вырезают кусочек материала. Пинцетом осторожно захватывают этот кусочек и поверхностью среза прикасаются к предметному стеклу в двух - трех местах, делая ряд мазков-отпечатков.

Высушивание мазка

Мазок высушивают на воздухе при комнатной температуре. В случае необходимости его можно высушить около пламени горелки, держа стекло в горизонтальном положении за края большим и указательным пальцами мазком вверх.

Внимание! При высокой температуре может произойти нарушение структуры клеток.

Фиксация мазка

Мазки фиксируют после полного высыхания с целью: 1) закрепить микроорганизмы на стекле; 2) обезвредить материал; 3) убитые микроорганизмы лучше воспринимают окраску. Фиксированный мазок называется препаратом.

Способы фиксации. 1. Физический - в пламени горелки: стекло берут пинцетом или большим и указательным пальцами и троекратно проводят через верхнюю часть пламени горелки в течение 6 с.

2. Химический - в жидкости: клеточные элементы в мазках из крови и мазках-отпечатках при действии высоких температур разрушаются, поэтому их обрабатывают одной из фиксирующих жидкостей: а) метиловым спиртом- 5 мин; б) этиловым спиртом - 10 мин; в) смесью Никифорова - 10-15 мин; г) ацетоном - 5 мин; д) парами кислоты и формалина - несколько секунд.

Окраска препаратов

После фиксации приступают к окраске препарата.

Окраску препаратов производят на специально оборудованном столе, покрытом линолеумом, пластиком, стеклом и т. д. На столе необходимы сосуд с дистиллированной водой; подставка из двух трубочек или палочек, соединенных резиновыми трубками с обеих сторон (для размещения препаратов); пинцеты, цилиндры, пипетки, фильтровальная бумага, набор красителей, емкость для их слива. Стол для окраски должен находиться рядом с водопроводным краном.

Отношение микроорганизмов к красителям называется их тинкториальными свойствами. В микробиологии широко используют анилиновые красители. Большинство микроорганизмов лучше воспринимает основные красители.

Наиболее употребительны следующие красители: красные (фуксин основной, фуксин кислый, конго красный, нейтральный красный); синие (метиленовый и толуидиновый); фиолетовые (генциановый, метиловый, кристаллический); коричнево-желтые (везувин, хризоидин); зеленые (бриллиантовый, малахитовый).

Все красители выпускают в виде аморфных или кристаллических порошков. Из них готовят насыщенные спиртовые и феноловые растворы, а затем для работы используют водно-спиртовые или водно-феноловые растворы красителей. Если при окраске используют концентрированные растворы красителей, то препарат предварительно накрывают фильтровальной бумагой, на которую наносят краситель. При этом кусочки красителя остаются на бумаге.

Внимание! Каплю красителя наносят пипеткой так, чтобы он покрыл весь препарат.

Рецепты красителей

1. Насыщенные спиртовые растворы (исходные):

Красителя - 1 г спирта 96% - 10 мл

Смесь помещают в термостат до полного растворения на несколько дней. Взбалтывают ежедневно. Хранят в склянках с притертыми пробками.

2. Карболовый фуксин Циля (для окраски кислотоустойчивых микроорганизмов, спор и капсул):

Насыщенного спиртового раствора основного фуксина - 10 мл раствора карболовой кислоты 5% - 90 мл

Внимание! Карболовую кислоту вливают в краситель, а не наоборот.

Смесь в течение нескольких минут энергично встряхивают, фильтруют и сливают во флакон для хранения.

3. Фуксин Пфейффера (для окраски по Граму и для простого метода окраски):

Фуксина Циля - 1 мл воды дистиллированной - 9 мл

Краситель готовят непосредственно перед применением.

4. Карболовый генциановый фиолетовый (для окраски по Граму):

насыщенного спиртового раствора

генцианового фиолетового - 10 мл

карболовой кислоты 5% - 100 мл

Растворы смешивают и фильтруют через бумажный фильтр.

5. Раствор Люголя (для окраски по Граму и реактив на крахмал):

Йодида калия - 2 г кристаллического йода - 1 г дистиллированной воды - 10 мл

Смесь помещают в бутыль матового стекла, хорошо закупоривают и ставят на сутки в термостат, затем добавляют 300 мл дистиллированной воды.

6. Щелочной раствор метиленового синего Леффлера:

Насыщенного спиртового раствора метиленового синего - 30 мл раствора гидроксида калия 1% - 1 мл дистиллированной воды - 100 мл

7. Бумажки по Синеву (для окраски по Граму):

1% спиртовой раствор кристаллического фиолетового

Полоски фильтровальной бумаги пропитывают раствором и высушивают.

Методы окраски делят на ориентировочные (простые) и дифференциальные (сложные), выявляющие химические и структурные особенности бактериальной клетки.

Простой метод окраски

Препарат помещают на подставку для окраски, исследуемым материалом вверх. Пипеткой наносят на него раствор красителя. По истечении указанного времени краситель осторожно сливают, препарат промывают водой и высушивают фильтровальной бумагой. При простом методе используют один краситель. Метиленовым синим и щелочным синим Леффлера окрашивают препарат в течение 3-5 мин, фуксином Пфейффера - 1-2 мин (см. рис. 4).

На окрашенный и высушенный препарат наносят каплю иммерсионного масла и

Сложные методы окраски

Окраска по Граму (универсальный метод) . Наиболее распространенным методом дифференциальной окраски является окраска по Граму.

В зависимости от результатов окраски все микроорганизмы делят на две группы - грамположительные и грамотрицательные.

Грамположительные бактерии содержат в клеточной стенке магниевую соль РНК, которая образует комплексное соединение с йодом и основным красителем (генциановым, метиловым или кристаллическим фиолетовым). Этот комплекс не разрушается при действии спирта, и бактерии сохраняют фиолетовый цвет.

Грамотрицательные бактерии не способны удержать основной краситель, так как не содержат магниевой соли РНК. Под действием спирта краситель вымывается, клетки обесцвечиваются и окрашиваются дополнительным красителем (фуксином) в красный цвет.

1. На препарат накладывают бумажку по Синеву и наносят несколько капель воды или раствор генцианового фиолетового. Окрашивают 1-2 мин. Снимают бумагу или сливают краситель.

2. Не промывая водой, наносят раствор Люголя до почернения (1 мин), затем краситель сливают.

3. Не промывая водой, наносят 96% спирт до отхождения красителя (30-60 с). Можно опустить препарат в стаканчик со спиртом на 1-2 с.

4. Промывают препарат водой.

5. Докрашивают фуксином Пфейффера 3 мин, промывают водой и высушивают.

Микроскопируют с помощью иммерсионной системы.

Окраска по Цилю - Нильсену (для кислотоустойчивых бактерий) . Этот метод применяют для выявления бактерий туберкулеза и проказы, имеющих в оболочке клеток большое количество липидов, воска и оксикислот. Бактерии кислото-, щелоче- и спиртоустойчивы. Для увеличения проницаемости клеточной стенки первый этап окрашивания проводят при подогревании.

1. Фиксированный препарат покрывают фильтровальной бумагой и наносят фуксин Циля. Удерживая стекло пинцетом, препарат подогревают над пламенем горелки до отхождения паров. Добавляют новую порцию красителя и подогревают еще 2 раза. После охлаждения снимают бумагу и промывают препарат водой.

2. Препарат обесцвечивают 5% раствором серной кислоты, погружая 2-3 раза в раствор или наливая кислоту на стекло, затем несколько раз промывают водой.

3. Окрашивают водно-спиртовым раствором метиленового синего в течение 3-5 мин, промывают водой и высушивают.

Микроскопируют с помощью иммерсионной системы.

Кислотоустойчивые бактерии окрашиваются в красный цвет, остальные - в синий (см. рис. 4).

Окраска по Ожешко (выявление спор) . 1. На высушенный на воздухе мазок наливают несколько капель 0,5% раствора хлороводородной кислоты и подогревают до образования паров. Препарат высушивают и фиксируют над пламенем.

2. Окрашивают по способу Циля - Нильсена. Кислотоустойчивые споры окрашиваются в розово-красный, а бактериальная клетка - в голубой цвет (см. рис. 4).

Окраска по Бурри - Гинсу (выявление капсулы) . Этот метод назван негативным, так как окрашивается фон препарата и бактериальная клетка, а капсула остается неокрашенной.

1. На предметное стекло наносят каплю черной туши, разведенной в 10 раз. В нее вносят каплю культуры. Ребром шлифовального стекла делают мазок, так же как мазок крови, и высушивают.

2. Фиксируют химическим способом спиртом или сулемой. Осторожно промывают водой.

3. Окрашивают фуксином Пфейффера 3-5 мин. Осторожно промывают и высушивают на воздухе.

Внимание! Фильтровальной бумагой не пользоваться, чтобы не повредить препарат.

Микроскопируют с помощью иммерсионной системы. Фон препарата черный, клетки - красные, капсулы - неокрашенные (см. рис. 4).

Прижизненная окраска микроорганизмов

Для изучения живой культуры используют чаще всего метиленовый синий и другие красители в больших разведениях (1:10000). Каплю исследуемого материала смешивают на предметном стекле с каплей красителя и накрывают покровным стеклом. Микроскопируют с помощью объектива 40×.

Изучение подвижности микроорганизмов

Для исследования используют культуру бактерий, выращенных в жидкой питательной среде, или взвесь бактерий в изотоническом растворе натрия хлорида.

Метод раздавленной капли . На предметное стекло наносят пипеткой каплю культуры и покрывают ее покровным стеклом. Чтобы не образовывалось пузырьков воздуха, покровное стекло подводят ребром к краю капли и резко опускают его. Для предохранения препарата от высыхания его помещают во влажную камеру.

Влажная камера представляет собой чашку Петри, на дне которой находится влажная фильтровальная бумага. На бумагу кладут две спички и на них помещают препарат. Чашку закрывают крышкой.

Микроскопируют при увеличении объектива 40х в темном поле (см. главу 2).

Метод висячей капли (рис. 8). Для приготовления препарата необходимы стекло с лункой, покровное стекло и вазелин. Края лунки покрывают тонким слоем вазелина.

На покровное стекло наносят каплю культуры. Затем осторожно накрывают покровное стекло стеклом с лункой так, чтобы капля оказалась в центре. Склеившиеся стекла быстро переворачивают покровным стеклом вверх. Капля находится в герметической камере и сохраняется долгое время. При микроскопии сначала при малом увеличении (8×) находят край капли, а затем проводят изучение препарата при большом увеличении.

Контрольные вопросы

1. Как приготовить бактериальную петлю?

2. Назовите цели и способы фиксации мазков.

3. Назовите основные красители.

4. Какими методами изучают подвижность микроорганизмов?

Задание

1. Возьмите готовые препараты, изучите их и зарисуйте основные формы микроорганизмов.

2. Приготовьте мазки из различного материала (культуры, гноя, крови, мазки-отпечатки).

3. Окрасьте препараты сложными методами (по Граму, Цилю - Нильсену, Ожешко, Бурри - Гинсу).