Какое свойство моделируется при имитационном подходе. Что такое имитационные модели? Разработка имитационной модели

Проектирование любого объекта – это многоступенчатый процесс, который требует анализа данных, их систематизации, конструирования и проверки результатов. В зависимости от объема предстоящих работ, трудности его воплощения в жизнь, используется либо реальные испытания, либо имитация. Это упрощает процесс, делает его менее дорогостоящим, а также позволяет вносить коррективы, доработки уже на моменте эксперимента.

В статье мы расскажем про имитационное математическое моделирование систем – что это такое, какие модели получаются, где они находят свое применение.

Особенности технологии

Любая работа с моделями состоит из двух основных этапов:

  • разработка и создание образца;
  • его аналитический анализ.

Затем уже вносятся коррективы, или утверждается данный план. При необходимости можно повторить процедуру несколько раз, чтобы добиться безупречного построения.

Таким образом, этот способ можно назвать наглядным познанием реальности в миниатюре. Есть объекты, которые дорого и трудоемко воплотить в реальность в натуральном размере без точной уверенности в эффективности всех конструктивных элементов, например, космические корабли или все использование имитационного моделирования в области аэродинамики методом фотоупругости.

Создание идентичной модели с повторением особенностей всей системы помогает добиться не только отражения внутренних закономерностей, но и внешних действующих сил, например, воздушных потоков или сопротивления воды.

Конструирование копий объектов началось с появлением первых компьютеров и сначала имело схематический характер, с развитием технологий прем получил все большее развитие и начал применяться даже на небольших производствах из-за своей наглядности.

Где, в каких случаях используется и для чего применяется метод имитационного моделирования

  • стоимость объекта намного выше, чем затраты на разработку модели;
  • деятельность продукции проходит с большой переменчивостью, есть необходимость просчитать все возможные сбои;
  • в конструкции находится большое количество мелких деталей;
  • важно увидеть наглядный образец с акцентом на внешний вид;
  • эксплуатация происходит в трудных для изучения средах – в воздухе или воде.

Применение обусловлено тем, что появляется возможность:

  • просчитать реальные значения и коэффициенты деятельности инженеров;
  • увидеть недостатки, исключить их, внести коррективы;
  • посмотреть работу объекта в реальном времени;
  • сделать наглядную демонстрацию.

Метод имитационного моделирования используется для:

  • Проектирования реальных бизнес-процессов.

  • Имитации боевых действий – действуют макеты реальных боеприпасов, снарядов, военной техники и мишеней. Так анализируют дальность выстрела, его разрушительные способности и радиус затронутой территории, проверяют оружие перед запуском в производство.
  • Анализа динамики населения.
  • Создания проекта инфраструктуры города, района.
  • Аутентичного изображения исторической реальности.
  • Логистики.
  • Проектирования перемещений пешеходов и автомобилей на проезжей части.
  • Производственного процесса – в виде экспериментального метода.
  • Аналитики рынка и конкурирующих фирм.
  • Ремонта автомобилей.
  • Управления предприятием.
  • Воссоздания экосистемы с животным и растительным миром.
  • Медицинских и научных опытов.

Мы будем рассматривать особенности имитационного моделирования на примере производственных работ и проектирования. Но разновидность систем показывает необходимость применять способ в разных сферах деятельности. Так исследуются характеристики конкретных областей – какие изменения могут произойти, как их контролировать и что предпринять, чтобы предотвратить возможные негативные последствия.

Все возможности создания модели реализуются с помощью компьютера, но различают две основных разновидности процесса:

  • Математический – он помогает разработать схему физических явлений с заданными параметрами.
  • Имитации – их основная задача – показать изменчивость поведения, поэтому исходные данные можно варьировать.

И математическое, и компьютерное имитационное моделирование основано на программах для автоматизированного проектирования, поэтому нужно ответственно подходить к выбору программного обеспечения. Компания ZWSOFT предлагает свои продукты по невысокой цене. – является аналогом ACAD, но при этом становится со временем популярнее старого софта. Это обусловлено:

  • облегченной системой лицензирования;
  • приемлемой ценовой политикой;
  • переводом на русский язык и адаптацией под пользователей многих стран;
  • широким выбором надстроек и модулей, которые созданы для узких специальностей и расширяют базовый функционал ZWCAD.

Виды имитационного моделирования

  • Агентное. Оно чаще используется для анализа сложных систем, где изменения не обуславливаются действием определенных законов, поэтому не подвергаются прогнозированию. Переменчивость зависит от агентов – нефиксированных элементов. Часто такая разновидность находит применение в таких науках, как социология, биология, экология.
  • Дискретно-событийное. Такой способ используется для вычленения из общей последовательности событий конкретных интересующих действий. Часто применяется для управления производственным циклом, когда важно отметить только результат определенных участков деятельности.
  • Системная динамика. Это основной способ для вычисления причинно-следственных связей и взаимовлияния. Именно он используется при производственных процессах и конструировании моделей будущего товара, чтобы проанализировать его характеристики в реальной жизни.

Основы аэродинамического и гидродинамического имитационного моделирования

Самыми трудоемкими для разработки являются объекты, которые изготовлены для эксплуатации в условиях повышенного давления, сопротивления или труднодосягаемы. К ним обязательно подходят с точки зрения ИМ, создают математические схемы, меняют исходные данные и проверяют влияние различных факторов, совершенствуют модель. При необходимости создается трехмерный макет, который погружается в имитацию реальной среды. К таким объектам относят:

  • Конструкции, которые погружаются под воду или находятся частично в жидкости, там самым испытывая на себе давление потоков. К примеру, для макетирования подводной лодки необходимо просчитать все силы, которые будут влиять на корпус, а затем анализировать, как ни изменятся при увеличении скорости движения и глубины погружения.
  • Предметы, созданные для полета в воздухе или даже для выхода из атмосферы Земли. Искусственные спутники, космические корабли до запуска проходят множественные проверки, причем инженеры не довольствуются только компьютерной визуализацией, а делают макет вживую по заданным на компьютере данным.

В основе ИМ аэродинамики часто лежит метод фотоупругости – определение воздействий на вещество определенных сил за счет двойного преломления лучей в материалах оптической природы. Так можно определить степень напряжения и деформации стенок. Этим же методом можно определить не только статичное воздействие, но и динамичное, то есть последствия взрывов, ударной волны.

Гидродинамическая модель задается несколькими параметрами вручную, учитываются все геологические, биологические, химические и физические свойства среды и объекта. На основе этих данных создается объемная модель. Задаются начальные и максимальные границы воздействия на конструкцию. Далее происходит адаптация к условиям нахождения предмета и последующий вывод конечных данных.

Активно применяют этот метод в горнодобывающей промышленности и при бурении скважин. Здесь учитываются сведения о земле,воздушных и водных ключах, возможных неблагоприятных для работ слоях.


Разработка модели

Воссоздаваемая проекция – это упрощенный вариант реального объекта с сохранением характеристик, особенностей, свойств, а также с причинно-следственными связями. Именно реакция на воздействия обычно становится самым важным элементом изучения. Понятие «имитационное моделирование» предполагает три этапа работа с моделью:

  1. Ее конструирование после тщательного анализа натуральной системы, перенос всех характеристик в математические формулы, построение графического образа, его объемный вариант.
  2. Эксперимент и фиксирование изменений качеств макета, выведение закономерностей.
  3. Проецирование полученных сведений на реальный объект, внесение коррективов.

Программное обеспечение для имитационного моделирования систем

При выборе программы для реализации проекта необходимо выбирать софт с поддержкой трехмерного пространства. Также важна возможность 3D-визуализации с последующей объемной печатью.

Компания «ЗВСОФТ» предлагает свою продукцию.

Базовый САПР, является аналогом популярного ПО – AutoCAD. Но многие инженеры переходят на «ЗВКАД» из-за облегченной системы лицензирования, более низкой цены и удобного, русскоязычного интерфейса. При этом новая разработка совсем не уступает по функционалу:

  • поддерживается работа как в двухмерном, так и в трехмерном пространстве;
  • интеграция с практически любыми текстовыми и графическими файлами;
  • удобство и большая функциональная панель инструментов.

При этом на ZWCAD можно установить множество надстроек, направленных на решение тех или иных задач.

– программа для создания и работы со сложными 3D объектами. Ее преимущества:

  • Удобный, доступный для пользователя с любым уровнем навыков интерфейс и автоматизированный процесс выбора элементов.
  • Легкое структурирование объектов на базе сетки, которую можно менять (их можно сжимать, растягивать, увеличивать или уменьшать высоту, клонировать, проецировать, делать впадины и выпуклости и многое другое).
  • Элементы из кривых и поверхностей NURBZ, их модификация профессиональными инструментами редактирования.
  • Создание объемных фигур на основе производных базовых и сложных объектов.
  • Моделирование поведения предметов, описанное в виде математических функций.
  • Трансформация одних форм в другие с выделением отдельных переходных элементов.
  • С плагинами RenderZone и V-Ray становится возможной детальная прорисовка всех деталей и фактур.
  • Анимация позволяет задать движение объектов как независимое, так и в зависимости одних от других.
  • 3D печать моделей.
  • Экспорт в системы инженерного анализа.

Еще одна разработка – это программа . Универсальная CAD-система в трех версиях – облегченная, стандартная и профессиональная. Возможности:

  • Создание трехмерного объекта любой сложности.
  • Гибридное моделирование.
  • Использование математических формул и функций при построении фигур.
  • Реверсивный инжиниринг, или обратная разработка продукции для внесения коррективов.
  • Моделирование движения с помощью анимации.
  • Работа с моделью, как с твердотельным, полым или каркасным образом.
  • Получение образцов на 3D принтере.
  • Использование переменных и математической среды для имитации поведения.

В статье мы рассказали, что относится к методам имитационного моделирования и что является его целью. За новыми технологиями будущее науки и производства.

Имитационное моделирование

Имитационное моделирование (ситуационное моделирование) - метод, позволяющий строить модели , описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику .

Имитационное моделирование - это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация - это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Имитационное моделирование - это частный случай математического моделирования . Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов .

Имитационная модель - логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

Применение имитационного моделирования

К имитационному моделированию прибегают, когда:

  • дорого или невозможно экспериментировать на реальном объекте;
  • невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;
  • необходимо сымитировать поведение системы во времени.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами - разработке симулятора (англ. simulation modeling ) исследуемой предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны. С наступлением эпохи персональных компьютеров производство сложных и уникальных изделий, как правило, сопровождается компьютерным трёхмерным имитационным моделированием. Эта точная и относительно быстрая технология позволяет накопить все необходимые знания, оборудование и полуфабрикаты для будущего изделия до начала производства. Компьютерное 3D моделирование теперь не редкость даже для небольших компаний.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950-х - 1960-х годах.

Можно выделить две разновидности имитации:

  • Метод Монте-Карло (метод статистических испытаний);
  • Метод имитационного моделирования (статистическое моделирование).

Виды имитационного моделирования

Три подхода имитационного моделирования

Подходы имитационного моделирования на шкале абстракции

  • Агентное моделирование - относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей - получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент - некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
  • Дискретно-событийное моделирование - подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений - от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.
  • Системная динамика - парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах.

Области применения

  • Динамика населения
  • ИТ-инфраструктура
  • Математическое моделирование исторических процессов
  • Пешеходная динамика
  • Рынок и конкуренция
  • Сервисные центры
  • Цепочки поставок
  • Уличное движение
  • Экономика здравоохранения

Свободные системы имитационного моделирования

См. также

  • Сетевое моделирование

Примечания

Литература

  • Хемди А. Таха Глава 18. Имитационное моделирование // Введение в исследование операций = Operations Research: An Introduction. - 7-е изд. - М .: «Вильямс», 2007. - С. 697-737. - ISBN 0-13-032374-8
  • Строгалев В. П., Толкачева И. О. Имитационное моделирование. - МГТУ им. Баумана, 2008. - С. 697-737. -

Введение

Одна из важных особенностей АСУ – принципиальная невозможность проведения реальных экспериментов до завершения проекта. Возможным выходом является использование имитационных моделей. Однако их разработка и использование чрезвычайно сложны, возникают затруднения в достаточно точном определении степени адекватности моделируемому процессу. Поэтому важно принять решение – какую создать модель.

Другой важный аспект – использование имитационных моделей в процессе эксплуатации АСУ для принятия решений. Такие модели создаются в процессе проектирования, чтобы их можно было непрерывно модернизировать и корректировать в соответствии с изменяющимися условиями работы пользователя.

Эти же модели могут быть использованы для обучения персонала перед вводом АСУ в эксплуатацию и для проведения деловых игр.

1. Понятие имитационного моделирования

Имитационное моделирование – это метод исследования, заключающийся в имитации на ЭВМ с помощью комплекса программ процесса функционирования системы или отдельных ее частей и элементов. Сущность метода имитационного моделирования заключается в разработке таких алгоритмов и программ, которые имитируют поведение системы, ее свойства и характеристики в необходимом для исследования системы составе, объеме и области изменения ее параметров.

Принципиальные возможности метода весьма велики, он позволяет при необходимости исследовать системы любой сложности и назначения с любой степенью детализации. Ограничениями являются лишь мощность используемой ЭВМ и трудоемкость подготовки сложного комплекса программ.

В отличие от математических моделей, представляющих собой аналитические зависимости, которые можно исследовать с помощью достаточно мощного математического аппарата, имитационные модели, как правило, позволяют проводить на них лишь одиночные испытания, аналогично однократному эксперименту на реальном объекте. Поэтому для более полного исследования и получения необходимых зависимостей между параметрами требуются многократные испытания модели, число и продолжительность которых во многом определяются возможностями используемой ЭВМ, а также свойствами самой модели.

Использование имитационных моделей оправдано в тех случаях, когда возможности методов исследования системы с помощью аналитических моделей ограничены, а натурные эксперименты по тем или иным причинам нежелательны или невозможны.

Даже в тех случаях, когда создание аналитической модели для исследования конкретной системы в принципе возможно, имитационное моделирование может оказаться предпочтительным по затратам времени ЭВМ и исследователя на проведение исследования. Для многих задач, возникающих при создании и функционировании АСУ, имитационное моделирование иногда оказывается единственным практически реализуемым методом исследования. Этим в значительной степени объясняется непрерывно возрастающий интерес к имитационному моделированию и расширение класса задач, для решения которых оно применяется.

Методы имитационного моделирования развиваются и используются в основном в трех направлениях: разработка типовых методов и приемов создания имитационных моделей; исследование степени подобия имитационных моделей реальным системам; создание средств автоматизации программирования, ориентированных на создание комплексов программ для имитационных моделей.

Различают два подкласса систем, ориентированных на системное и логическое моделирование. К подклассу системного моделирования относят системы с хорошо развитыми общеалгоритмическими средствами; с широким набором средств описания параллельно выполняемых действий, временных последовательностей выполнения процессов; с возможностями сбора и обработки статистического материала. В таких системах используют специальные языки программирования и моделирования – СИМУЛА, СИМСКРИПТ, GPSS и др. Первые два из этих языков являются подмножествами процедурно-ориентированных языков программирования типа ФОРТРАН, ПЛ/1, расширенными средствами динамических структур данных, операторами управления квазипараллельными процессами, специальными средствами сбора статистики и обработки списков. Эти дополнительные возможности позволяют вести статистические исследования моделей, поэтому такие системы иногда называют системами статистического моделирования.

К подклассу логического моделирования относят системы, позволяющие в удобной и сжатой форме отражать логические и топологические особенности моделируемых объектов, обладающие средствами работы с частями слов, преобразования форматов, записи микропрограмм. К этому подклассу систем относят языки программирования АВТОКОД, ЛОТИС и др.

В большинстве случаев при имитационном моделировании экономических, производственных и других организационных систем управления исследование модели заключается в проведении стохастических экспериментов. Отражая свойства моделируемых объектов, эти модели содержат случайные переменные, описывающие как функционирование самих систем, так и воздействия внешней среды. Поэтому наибольшее распространение получило статистическое моделирование.

Имитационная модель характеризуется наборами входных переменных

наблюдаемых или управляемых переменных

управляющих воздействий

возмущающих воздействий

Состояние системы в любой момент времени

и начальные условия Y(t0), R(t0), W(t0) могут быть случайными величинами, заданными соответствующим распределением вероятностей. Соотношения модели определяют распределение вероятностей величин в момент t + ∆t:

Существуют два основных способа построения моделирующего алгоритма – принцип ∆t и принцип особых состояний.

Принцип ∆t. Промежуток времени (t0, t), в котором исследуется поведение системы, разбивают на интервалы длиной ∆t. В соответствии с заданным распределением вероятностей для начальных условий по априорным соображениям или случайным образом выбирают для начального момента t0 одно из возможных состояний z0(t0). Для момента t0 + ∆t вычисляется условное распределение вероятностей состояний (при условии состояния z0(t0)). Затем аналогично предыдущему выбирают одно из возможных состояний z0(t0 + ∆t), выполняют процедуры вычисления условного распределения вероятностей состояний для момента t0 + 2∆t и т.д.

В результате повторения этой процедуры до момента t0 + n∆t = T получают одну из возможных реализаций исследуемого случайного процесса. Таким же образом получают ряд других реализаций процесса. Описанный способ построения моделирующего алгоритма занимает много машинного времени.

Принцип особых состояний. Все возможные состояния системы Z(t) = {zi(t)} разбивают на два класса – обычные и особые. В обычных состояниях характеристики zi(t) меняются плавно и непрерывно. Особые состояния определяются наличием входных сигналов или выходом, по крайней мере, одной из характеристик zi(t) на границу области существования. При этом состояние системы меняется скачкообразно.

Моделирующий алгоритм должен предусматривать процедуры определения моментов времени, соответствующих особым состояниям, и величин характеристик системы в эти моменты. При известном распределении вероятностей для начальных условий выбирают одно из возможных состояний и по заданным закономерностям изменений характеристик zi(t) находят их величины перед первым особым состоянием. Таким же образом переходят ко всем последующим особым состояниям. Получив одну из возможных реализаций случайного многомерного процесса, с использованием аналогичных процедур строят другие реализации. Затраты машинного времени при использовании моделирующего алгоритма по принципу особых состояний обычно меньше, чем по принципу ∆t.

Имитационное моделирование используют в основном для следующих применений:

1) при исследовании сложных внутренних и внешних взаимодействий динамических систем с целью их оптимизации. Для этого изучают на модели закономерности взаимосвязи переменных, вносят в модель изменения и наблюдают их влияние на поведение системы;

2) для прогнозирования поведения системы в будущем на основе моделирования развития самой системы и ее внешней среды;

3) в целях обучения персонала, которое может быть двух типов: индивидуальное обучение оператора, управляющего некоторым технологическим процессом или устройством, и обучение группы людей, осуществляющих коллективное управление сложным производственным или экономическим объектом.

В системах обоих типов комплекс программ задает некоторую обстановку на объекте, однако между ними имеется существенное различие. В первом случае программное обеспечение имитирует функционирование объектов, описываемых технологическими алгоритмами или передаточными функциями; модель ориентирована на тренировку психофизиологических характеристик человека, поэтому такие модели называются тренажерами. Модели второго типа гораздо сложнее. Они описывают некоторые аспекты функционирования предприятия или фирмы и ориентированы на выдачу некоторых технико-экономических характеристик при воздействии на входы чаще всего не отдельного человека, а группы людей, выполняющих различные функции управления;

4) для макетирования проектируемой системы и соответствующей части управляемого объекта с целью прикидочной проверки предполагаемых проектных решений. Это позволяет в наиболее наглядной и понятной заказчику форме продемонстрировать ему работу будущей системы, что способствует взаимопониманию и согласованию проектных решений. Кроме того, такая модель позволяет выявить и устранить возможные неувязки и ошибки на более ранней стадии проектирования, что на 2–3 порядка снижает стоимость их исправления.

В связи с перечисленными трудностями, возникающими при изучении сложных систем аналитическими методами, практика потребовала более гибкий и мощный метод. В результате в начале 60-х гг. прошлого века появилось имитационное моделирование (Modeling&Simulation).

Как уже говорилось, под имитационным моделированием мы

будем понимать не просто разработку модели, а комплексный процесс ИИСС. Это постановка задачи исследования, формализация функционирования системы, отдельных ее элементов и правил взаимодействия между ними, разработка модели, накопление и наполнение модели данными, проведение исследования и выработка методических рекомендаций по вопросам существования и модернизации системы.

Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на компьютере) и последующий статистический анализ полученных результатов. В целом имитационное моделирование подразумевает исполнение процессов создания программной модели и проведение с этой программой последовательных и целенаправленных экспериментов, осуществляемых пользователем на компьютере. Следует отметить, что имитационная модель является программным представлением формального описания системы. Она отражает только часть системы, которую удалось формализовать и описать с помощью программы. При этом пользователь в модель может включить (и чаще всего это так и происходит) только часть формального описания. Случается это прежде всего из-за вычислительных возможностей доступного для использования компьютера, сложностей программной реализации, необходимостью детального исследования только некоторых частей системы, отсутствияем необходимых исходных данных для моделирования и т.д.

Еще раз подтвердим, что при создании имитационной модели исследователь выполняет все процедуры, присущие системному анализу, - формулирует цель исследования, создает формальное описание функционирования системы с использованием одного из подходов (состав, структура, алгоритмы работы, показатели), программирует модель на одном из языков имитационной модели, проводит эксперименты с моделью, формулирует выводы и рекомендации.

В самом общем виде уровень детализации имитационной модели, в проекции на ее существующее формальное описание, представлено на рис. 1.8.

Преимущества имитационного моделирования перед другими методами системного анализа заключаются в следующем:

Возможность создать большую близость к реальной системе, чем с использованием аналитических моделей, - детализация,

Рис. 1.8.

терминология, интерфейс пользователя, представление исходных данных и результатов;

  • - блочный принцип построения и отладки модели. Такой подход дает возможность верифицировать каждый блок модели до его включения в общую модель системы и реализовать поэтапное создание и исполнение модели;
  • - использование в модели зависимостей более сложного характера (в том числе и случайных), не описываемых простыми математическими соотношениями, за счет применения численных методов;
  • - неограниченный уровень детализации системы. Он сдерживается только потребностями задачи, возможностями компьютера и системы моделирования, а также способностями самого пользователя описать систему;
  • - возможность проведения экспериментов с программной моделью, а не с системой, что спасает нас от многих ошибок и экономит реальные средства;
  • - проверка форс-мажорных обстоятельств, которые на реальной системе проверять сложно, а чаще всего невозможно;
  • - моделирование позволяет проводить исследование не существующей еще системы. Например, целесообразности модернизации (либо расширения, либо уменьшения существующей системы).

Перечисленные достоинства определяют недостатки и некоторые дополнительные сложности, присущие любым процессам, в том числе и при применении имитационной модели. Нужно признать, что такие недостатки и сложности, действительно, существуют. К основным недостаткам имитационной модели можно отнести:

  • - построить имитационную модель по сравнению с аналитической моделью дольше, труднее и дороже;
  • - для работы с имитационной системой необходимо наличие подходящего по классу компьютера и соответствующего задаче языка имитационного моделирования;
  • - сложность построения диалога пользователя с моделью. Взаимодействие пользователя и имитационной модели (интерфейс) должно быть простым, удобным и соответствовать предметной области, а это требует дополнительного объема программирования;
  • - построение имитационной модели требует более глубокого, длительного и детального изучения реального процесса (так как модель более детальная), нежели математическое моделирование.

При применении имитационной модели в качестве исследуемой системы может выступать абсолютно любой субъект экономики - конкретное предприятие (или его составляющая), крупный инфраструктурный проект, отрасль производства, технология и т.д. Посредством имитационной модели анализу может быть подвергнута любая система массового обслуживания, как и любая другая система, имеющая некоторое число дискретных состояний и логику их взаимосвязи. Переход во времени из одного состояния в другое обеспечивается в силу ряда условий и причин (детерминированных и случайных). Главное отличие метода имитационного моделирования от других методов состоит в практически ничем не ограниченной степени детализации систем и, как следствие, в возможности представить систему для исследователя так, как она «выглядит» в жизни.

При использовании имитационного моделирования можно проверить и получить ответ на множество вопросов типа, например: что будет, если:

  • - построить новую систему тем или иным способом;
  • - провести ту или иную реорганизацию системы;
  • - изменить поставщиков сырья, материалов и комплектующих;
  • - модернизировать логистические цепочки их поставки;
  • - увеличить (уменьшить) объемы ресурсов, количество персонала и оборудования;
  • - изменить технологию обработки или обслуживания?

С точки зрения практического применения самое главное состоит в том, что в результате моделирования можно:

  • - уменьшить экономические и организационные издержки предприятий и проектов;
  • - обнаружить узкие места системы и проверить различные варианты по их устранению;
  • - увеличить пропускную способность системы;
  • - снизить экономические, организационные, технологические и другие риски предприятий и проектов.

Отметим, достичь всего этого можно без проведения экспериментов над самой реальной системой, а исследуя только ее программную модель. Это позволяет избежать множества системных ошибок, социальных проблем и провести такие эксперименты, которые могли бы быть губительны для реальной системы.

Конечно, использование имитационной модели в повседневной практике не обязательно и в России не регламентировано никакими нормами и законами. Хотя определенные усилия по созданию нормативной базы имитационной модели сейчас предпринимаются.

Сейчас, к сожалению, во многих случаях системы создаются, модернизируются и эксплуатируются без применения метода имитационной модели. Каждый разработчик или собственник системы вправе самостоятельно принимать решение об использовании имитационной модели.

В статье поговорим об имитационных моделях. Это довольно сложная тема, которая требует отдельного рассмотрения. Именно поэтому мы попробуем доступным языком объяснить этот вопрос.

Имитационные модели

О чем же идет речь? Начнем с того, что имитационные модели необходимы для воспроизведения каких-либо характеристик сложной системы, в которой происходит взаимодействие элементов. При этом такое моделирование имеет ряд особенностей.

Во-первых, это объект моделирования, который чаще всего представляет собой сложную комплексную систему. Во-вторых, это факторы случайности, которые присутствуют всегда и оказывают определенное влияние на систему. В-третьих, это необходимость описания сложного и длительного процесса, который наблюдается в результате моделирования. Четвертый фактор заключается в том, что без использования компьютерных технологий получить желаемые результаты невозможно.

Разработка имитационной модели

Она заключается в том, что каждый объект имеет определенный набор своих характеристик. Все они хранятся в компьютере при помощи специальных таблиц. Взаимодействие значений и показателей всегда описывается при помощи алгоритма.

Особенность и прелесть моделирования в том, что каждый его этап постепенный и плавный, что дает возможность пошагово менять характеристики и параметры и получать разные результаты. Программа, в которой задействованы имитационные модели, выводит информацию о полученных результатах, опираясь на те или иные изменения. Часто используется графическое или анимированное их представление, сильно упрощающее восприятие и понимание многих сложных процессов, которые осознать в алгоритмичном виде довольно сложно.

Детерминированность

Имитационные математические модели строятся на том, что они копируют качества и характеристики неких реальных систем. Рассмотрим пример, когда необходимо исследовать количество и динамику численности определённых организмов. Для этого при помощи моделирования можно отдельно рассматривать каждый организм, чтобы анализировать конкретно его показатели. При этом условия чаще всего задаются вербально. К примеру, по истечении какого-то отрезка времени можно задать размножение организма, а по прошествии более длительного срока - его гибель. Выполнение всех этих условий возможно в имитационной модели.

Очень часто приводят примеры моделирования движения молекул газа, ведь известно, что они двигаются хаотично. Можно изучать взаимодействие молекул со стенками сосуда или друг с другом и описывать результаты в виде алгоритма. Это позволит получать усредненные характеристики всей системы и выполнять анализ. При этом надо понимать, что подобный компьютерный эксперимент, по сути, можно назвать реальным, так как все характеристики моделируются очень точно. Но в чём смысл этого процесса?

Дело в том, что имитационная модель позволяет выделить конкретные и чистые характеристики и показатели. Она как бы избавляется от случайных, лишних и ещё ряда других факторов, о которых исследователи могут даже не догадываться. Заметим, что очень часто детерминирование и математическое моделирование схожи, если в качестве результата не должна быть создана автономная стратегия действий. Примеры, которые мы выше рассмотрели, касаются детерминированных систем. Они отличаются тем, что у них нет элементов вероятности.

Случайные процессы

Наименование очень просто понять, если провести параллель из обычной жизни. Например, когда вы стоите в очереди в магазине, который закрывается через 5 минут, и гадаете, успеете ли вы приобрести товар. Также проявление случайности можно заметить, когда вы звоните кому-то и считаете гудки, думая, с какой вероятностью дозвонитесь. Возможно, кому-то это покажется удивительным, но именно благодаря таким простым примерам в начале прошлого века зародилась новейшая отрасль математики, а именно теория массового обслуживания. Она использует статистику и теорию вероятности для того, чтобы сделать некоторые выводы. Позже исследователи доказали, что эта теория очень тесно связана с военным делом, экономикой, производством, экологией, биологией и т. д.

Метод Монте-Карло

Важный метод решения задачи на самообслуживание - это метод статистических испытаний или метод Монте-Карло. Заметим, что возможности исследования случайных процессов аналитическим путем довольно сложны, а метод Монте-Карло очень прост и универсален, в чем его главная особенность. Мы можем рассмотреть пример магазина, в который заходит один покупатель или несколько, приход больных в травмпункт по одному или целой толпой и т. д. При этом мы понимаем, что всё это случайные процессы, и промежутки времени между какими-то действиями - это независимые события, которые распределяются по законам, которые можно вывести, только проведя огромное количество наблюдений. Иногда это невозможно, поэтому берется усредненный вариант. Но какова цель моделирования случайных процессов?

Дело в том, что это позволяет получить ответы на множество вопросов. Банально необходимо рассчитать, сколько человеку придется стоять в очереди при учете всех обстоятельств. Казалось бы, это довольно простой пример, но это лишь первый уровень, а подобных ситуаций может быть очень много. Иногда рассчитать время очень важно.

Также можно задать вопрос о том, как можно распределить время, ожидая обслуживание. Еще более сложный вопрос касается того, как должны соотнестись параметры, чтобы до только что вошедшего покупателя очередь не дошла никогда. Кажется, что это довольно лёгкий вопрос, но если задуматься о нем и начать хотя бы немножко усложнять, становится понятно, что ответить не так легко.

Процесс

Как же происходит случайное моделирование? Используются математические формулы, а именно законы распределения случайных величин. Также используются числовые константы. Заметьте, что в данном случае не надо прибегать ни к каким уравнениям, которые используют при аналитических методах. В данном случае просто происходит имитация той же очереди, о которой мы говорили выше. Только сначала используются программы, которые могут генерировать случайные числа и соотносить их с заданным законом распределения. После этого проводится объемная, статистическая обработка полученных величин, которая анализирует данные на предмет, отвечают ли они изначальной цели моделирования. Продолжая дальше, скажем, что можно найти оптимальное количество людей, которые будут работать в магазине для того, чтобы очередь не возникала никогда. При этом используемый математический аппарат в данном случае - это методы математической статистики.

Образование

Анализу имитационных моделей в школах уделяется мало внимания. К сожалению, это может отразиться на будущем довольно серьезно. Дети должны со школы знать некоторые базовые принципы моделирования, так как развитие современного мира без этого процесса невозможно. В базовом курсе информатики дети могут с легкостью использовать имитационную модель "Жизнь".

Более основательное изучение может преподаваться в старших классах или в профильных школах. Прежде всего надо заняться изучением имитационного моделирования случайных процессов. Помните, что в российских школах такое понятие и методы только начинают вводиться, поэтому очень важно держать уровень образования учителей, которые со стопроцентной гарантией столкнутся с рядом вопросов от детей. При этом не будем усложнять задачу, акцентируя внимание на том, что речь идет об элементарном введении в эту тему, которое можно подробно рассмотреть за 2 часа.

После того как дети усвоили теоретическую базу, стоит осветить технические вопросы, которые касаются генерации последовательности случайных чисел на компьютере. При этом не надо загружать детей информацией о том, как работает вычислительная машина и на каких принципах строится аналитика. Из практических навыков их нужно учить создавать генераторы равномерных случайных чисел на отрезке или случайных чисел по закону распределения.

Актуальность

Поговорим немного о том, зачем нужны имитационные модели управления. Дело в том, что в современном мире обойтись без моделирования практически невозможно в любой сфере. Почему же оно так востребовано и популярно? Моделирование может заменить реальные события, необходимые для получения конкретных результатов, создание и анализ которых стоят слишком дорого. Или же может быть случай, когда проводить реальные эксперименты запрещено. Также люди пользуются им, когда просто невозможно построить аналитическую модель из-за ряда случайных факторов, последствий и причинных связей. Последний случай, когда используется этот метод, - это тогда, когда необходимо имитировать поведение какой-либо системы на протяжении данного отрезка времени. Для всего этого создаются симуляторы, которые пытаются максимально воспроизвести качества первоначальной системы.

Виды

Имитационные модели исследования могут быть нескольких видов. Так, рассмотрим подходы имитационного моделирования. Первое - это системная динамика, которая выражается в том, что есть связанные между собой переменные, определенные накопители и обратная связь. Таким образом чаще всего рассматриваются две системы, в которых есть некоторые общие характеристики и точки пересечения. Следующий вид моделирования - дискретно-событийное. Оно касается тех случаев, когда есть определенные процессы и ресурсы, а также последовательность действий. Чаще всего таким способом исследуют возможность того или иного события через призму ряда возможных или случайных факторов. Третий вид моделирования - агентный. Он заключается в том, что изучаются индивидуальные свойства организма в их системе. При этом необходимо косвенное или прямое взаимодействие наблюдаемого объекта и других.

Дискретно-событийное моделирование предлагает абстрагироваться от непрерывности событий и рассматривать только основные моменты. Таким образом случайные и лишние факторы исключаются. Этот метод максимально развит, и он используется во множестве сфер: от логистики до производственных систем. Именно он лучше всего подходит для моделирования производственных процессов. Кстати, его создал в 1960-х годах Джеффри Гордон. Системная динамика - это парадигма моделирования, где для исследования необходимо графическое изображение связей и взаимных влияний одних параметров на другие. При этом учитывается фактор времени. Только на основе всех данных создается глобальная модель на компьютере. Именно этот вид позволяет очень глубоко понять суть исследуемого события и выявить какие-то причины и связи. Благодаря этому моделированию строят бизнес-стратегии, модели производства, развитие болезней, планирование города и так далее. Этот метод был изобретён в 1950-х годах Форрестером.

Агентное моделирование появилось в 1990-х годах, оно является сравнительно новым. Это направление используется для анализа децентрализованных систем, динамика которых при этом определяется не общепринятыми законами и правилами, а индивидуальной активностью определенных элементов. Суть этого моделирования заключается в том, чтобы получить представление о новых правилах, в целом охарактеризовать систему и найти связь между индивидуальными составляющими. При этом изучается элемент, который активен и автономен, может принимать решения самостоятельно и взаимодействовать со своим окружением, а также самостоятельно меняться, что очень важно.

Этапы

Сейчас рассмотрим основные этапы разработки имитационной модели. Они включают её формулировку в самом начале процесса, построение концептуальной модели, выбор способа моделирования, выбор аппарата моделирования, планирование, выполнение задачи. На последнем этапе происходит анализ и обработка всех полученных данных. Построение имитационной модели - это сложный и длительный процесс, который требует большого внимания и понимания сути дела. Заметьте, что сами этапы занимают максимум времени, а процесс моделирования на компьютере - не больше нескольких минут. Очень важно использовать правильные модели имитационного моделирования, так как без этого не получится добиться нужных результатов. Какие-то данные получены будут, но они будут не реалистичны и не продуктивны.

Подводя итоги статьи, хочется сказать, что это очень важная и современная отрасль. Мы рассмотрели примеры имитационных моделей, чтобы понять важность всех этих моментов. В современном мире моделирование играет огромную роль, так как на его основании развиваются экономика, градостроение, производство и так далее. Важно понимать, что модели имитационных систем очень востребованы, так как они невероятно выгодны и удобны. Даже при создании реальных условий не всегда можно получить достоверные результаты, так как всегда влияет множество схоластических факторов, которые учесть просто невозможно.