Отношения и функции. Функции общения Функции выполняемые отношениями

Пусть E произвольное множество и пусть декартова степень равняется: E n =ExEx…E {n раз}, объект f(x 1 ,…,x n): E n →E есть n местная функция f n или функция n переменных определённая на множестве E. Нульместная функция есть константа из E.

Определение : Пусть F есть некоторое множество функций из P E (множество всех функций определённых на E), тогда:

1. Всякая функция из E есть суперпозиция над F.

2. Если функция f(x 1 ,…,x n) принадлежит F и каждая из A 1 ,…,A n есть либо суперпозиция над F либо переменная, то f(A 1 ,…,A n) есть суперпозиция над F.

Замечание : Суперпозиция над F есть обычная подстановка построенная из функций множества F. Суперпозиция над F допускает переименование переменных.

Определение : Класс M функций из P E функционально замкнут, если вместе с любыми своими функциями класс M содержит и любую их суперпозицию.

Определение : Замыкание [M] множества функций M из P E есть множество всех суперпозиций над M.

Замечание :
1. M принадлежит [M].
2. [[M]]=[M](свойство идемпотентности).
3. M 1 принадлежит M 2 следует, что принадлежит .

Обозначение : D(f) – область определения функции f.
R(f), Im(f) – область значений функции f.

Пусть A 1 ,…,A n – произвольные множества. Отношение ρ есть некоторое подмножество декартова произведения A 1 xA 2 x…xA n ρ ⊆A 1 xA 2 x…xA n .

Значение отношения ρ может быть истинным или ложным:
— 1 означает принадлежность набора (a 1 ,…, a n) ∈ ρ декартову произведению.
— 0 – наоборот.

Пусть E- произвольное множество.
Определение : n-арное (n-местное) отношение определённое на множестве E есть подмножество ρ ⊆E n =Ex…xE (n раз).

Замечание : Возможно предикатное от ρ(x 1 ,…, x n) и множественная (x 1 ,…, x n) принадлежит ρ записи для отношения ρ. (Предикат есть отношение). Пусть R E есть класс всех отношений определённых на множестве E.

Замечание : Предикат (отношение), определенный на множестве Е, есть функция, определенная на множестве Е принимающая только два значения [И,Л или T,F или 1,0].
Множество истинности предиката, есть множество всех тех наборов на котором предикат истинен.

Введем следующие операции (Мальцева):

1) ζρ(x 1 ,x 2 ,…,x n) = ρ ζ (x 1 ,x 2 ,…,x n) = ρ(x 2 ,x 3 ,…,x n ,x 1) – циклическая перестановка аргументов.

2) τρ(x 1 ,x 2 ,…,x n) = ρ τ (x 1 ,x 2 ,…,x n) = ρ(x 2 ,x 1 ,x 3 ,…,x n) – транспозиция (перестановка аргументов x 1 и x 2).

3) Δρ(x 1 ,x 2 ,…,x n) = ρ Δ (x 1 ,x 2 ,…,x n) = ρ(x 1 ,x 1 ,x 2 ,…,x n-1) – отождествление двух первых аргументов.

4) ∇ρ(x 1 ,x 2 ,…,x n) = ρ ∇ (x 1 ,x 2 ,…,x n) = ρ(x 2 ,…,x n+1) – введение фиктивной переменной.

5) ρ(x 1 , x 2 ,…,x n)*δ(x 1 , x 2 ,…,x m) = ρ * (x 1 ,…,x n+m-2) =
= {(a 1 ,…,a n+m-2) ∈ E n+m-2: ∃ a ∈ E, (a 1 ,…,a n-1 ,a) ∈ ρ & (a,a n ,…,a n+m-2) ∈ δ} – свертка отношений δ и ρ.

Замечание :

1) С помощью операций ζ, τ можно получить произвольную перестановку переменных.

2) С помощью операций ζ, τ, Δ отождествленных переменных может быть осуществлена на ∀ аргументах местах отношения.

3) С помощью операций ζ, τ, ∇ — фиктивные переменные могут быть введены на ∀ аргументых местах отношения.

4) С помощью ζ, τ, * свертка может быть осуществлена по ∀ переменным в обоих отношениях.

5) Кроме перечисленных в теории и практике программирования могут вводится и другие операции над отношениями.

  1. Лекция № 1. Множества и операции над ними.
  2. Лекция № 2. Соответствия и функции.
  3. Лекция № 3. Отношения и их свойства.
  4. Лекция № 4. Основные виды отношений.
  5. Лекция № 5. Элементы общей алгебры.
  6. Лекция № 6. Различные виды алгебраических структур.
  7. Лекция № 7. Элементы математической логики.
  8. Лекция № 8. Логические функции.
  9. Лекция № 9. Булевы алгебры.
  10. Лекция № 10. Булевы алгебры и теория множеств.
  11. Лекция № 11. Полнота и замкнутость.
  12. Лекция № 12. Язык логики предикатов.
  13. Лекция № 13. Комбинаторика.
  14. Лекция № 14. Графы: основные понятия и операции.
  15. Лекция № 15. Маршруты, цепи и циклы.
  16. Лекция № 16. Некоторые классы графов и их частей.

РАЗДЕЛ I. МНОЖЕСТВА, ФУНКЦИИ, ОТНОШЕНИЯ.

Лекция № 2. Соответствия и функции.

1. Соответствия.

Определение. Соответствием между множествами А и В называется некоторое подмножество G их декартова произведения: .

Если , то говорят, что соответствует при соответствии . При этом множество всех таких называют областью определения соответствия , а множество соответствующих значений называются областью значений соответствия .

В принятых обозначениях, каждый элемент , соответствующий данному элементу называется образом при соответствии , наоборот, элемент называется прообразом элемента при данном соответствии.

Соответствие называется полностью определённым , если , то есть каждый элемент множества имеет хотя бы один образ во множестве ; в противном случае соответствие называется частичным .

Соответствие называется сюръективным , если , то есть если каждому элементу множества соответствует хотя бы один прообраз во множестве .

Соответствие называется функциональным (однозначным), если любому элементу множества соответствует единственный элемент множества .

Соответствие называется инъективным , если оно является функциональным, и при этом каждый элемент множества имеет не более одного прообраза.

Соответствие называется взаимнооднозначным (биективным), если любому элементу множества соответствует единственный элемент множества , и наоборот. Можно сказать также, что соответствие является взаимнооднозначным, если оно является полностью определённым, сюръективным, функциональным, и при этом каждый элемент множества имеет единственный прообраз.

Пример 1.

а) Англо-русский словарь устанавливает соответствие между множествами слов русского и английского языка. Оно не является функциональным, так как почти каждому русскому слову соответствует несколько английских переводов; оно, также, не является, как правило, полностью определённым соответствием, так как всегда существуют английские слова, не включённые в данный словарь. Таким образом, это частичное соответствие.

б) Соответствие между аргументами функции и значениями этой функции является функциональным. Однако оно не является взаимнооднозначным, так как каждому значению функции соответствуют два прообраза и .

в) Соответствие между расположенными на шахматной доске фигурами и занимаемыми ими полями является взаимно однозначным.

г) Соответствие между телефонами города Вязьмы и их пятизначными номерами обладает, на первый взгляд, всеми свойствами взаимнооднозначного соответствия. Однако оно, например, не сюръективно, поскольку существуют пятизначные числа, не соответствующие никаким телефонам.

2. Взаимнооднозначные соответствия и мощности множеств.

Если между двумя конечными множествами А и В существует взаимнооднозначное соответствие, то эти множества равномощны. Этот очевидный факт позволяет, во-первых, установить равенство мощности этих множеств, не вычисляя их. Во-вторых, часто можно вычислить мощность множества, установив его однозначное соответствие с множеством, мощность которого известна, либо легко вычисляется.

Теорема 2.1. Если мощность конечного множества А равна , то число всех подмножеств А равно , то есть .

Множество всех подмножеств множества М называется булеаном и обозначается . Для конечных множеств выполняется: .

Определение. Множества А и В называются равномощными, если между их элементами можно установить взаимнооднозначное соответствие.

Заметим, что для конечных множеств это утверждение легко доказать. Для бесконечных множеств оно определят само понятие равномощности.

Определение. Множество А называется счётным, если оно равномощно множеству натуральных чисел : .

Очень упрощённо можно сказать, что данное бесконечное множество является счётным, если для его элементов можно установить нумерацию с помощью натуральных чисел.

Без доказательства примем ряд важных фактов:

1. Любое бесконечное подмножество множества натуральных чисел является счётным.

2. Множество является счётным.

3. Множество рациональных чисел является счётным (является следствием из предыдущего утверждения).

4. Объединение конечного числа счётных множеств является счётным.

5. Объединение счётного числа конечных множеств является счётным.

6. Объединение счётного числа счётных множеств является счётным.

Все эти утверждения, как можно видеть, позволяют достаточно успешно устанавливать факт, что данное множество является счётным. Однако сейчас будет показано, что не всякое бесконечное множества является счётным; существует множества большей мощности.

Теорема 2.2 (теорема Кантора). Множество всех действительных чисел из отрезка не является счётным.

Доказательство. Допустим, что множество является счётным и существует его нумерация. Поскольку любое действительное число можно представить в виде бесконечной десятичной дроби (периодической или непериодической), то проделаем это с числами данного множества. Расположим их в порядке этой нумерации:

Теперь рассмотрим любую бесконечную десятичную дробь вида , организованную таким образом, что и так далее. Очевидно, что данная дробь не входит в рассматриваемую последовательность, поскольку от первого числа она отличается первой цифрой после запятой, от второго – второй цифрой и так далее. Следовательно, мы получили число из данного интервала, которое не пронумеровано и, таким образом, множество не является счётным. Его мощность называется континуум , а множества такой мощности называются континуальными . Приведённый метод доказательства называется диагональным методом Кантора .

Следствие 1. Множество действительных чисел континуально.

Следствие 2. Множество всех подмножеств счётного множества континуально.

Как показывается в теории множеств (с помощью метода, аналогичного приведённому выше), для множества любой мощности множество всех его подмножеств (булеан) имеет более высокую мощность. Поэтому не существует множества максимальной мощности. Например, множество-универсум , описанное Кантором должно содержать все мыслимые множества, однако оно само содержится в множестве своих подмножеств в качестве элемента (парадокс Кантора). Получается, что множество не является множеством максимальной мощности.

3. Отображения и функции.

Функцией называется любое функциональное соответствие между двумя множествами. Если функция устанавливает соответствие между множествами А и В, то говорят, что функция имеет вид (обозначение ). Каждому элементу из своей области определения функция ставит в соответствие единственный элемент из области значений. Это записывается в традиционной форме . Элемент называется аргументом функции, элемент - её значением .

Полностью определённая функция называется отображением А в В; образ множества А при отображении обозначается . Если при этом , то есть соответствие сюръективно, говорят, что имеет отображение А на В.

Если состоит из единственного элемента, то называется функцией-константой.

Отображение типа называется преобразованием множества А.

Пример 2.

а) Функция является отображением множества натуральных чисел в себя (инъективная функция). Эта же функция при всех является отображением множества целых чисел в множество рациональных чисел.

б) Функция является отображением множества целых чисел (кроме числа 0) на множество натуральных чисел. Причём в данном случае соответствие не является взаимно однозначным.

в) Функция является взаимнооднозначным отображением множества действительных чисел на себя.

г) Функция не полностью определена, если её тип , но полностью определена, если её тип или .

Определение. Функция типа называется местной функцией. В этом случае принято считать, что функция имеет аргументов: , где .

Например, сложение, умножение, вычитание и деление являются двухместными функциями на , то есть функциями типа .

Определение. Пусть дано соответствие . Если соответствие таково, что тогда и только тогда, когда , то соответствие называют обратным к и обозначают .

Определение. Если соответствие, обратное к функции является функциональным, то оно называется функцией, обратной к .

Очевидно, что в обратном соответствии образы и прообразы меняются местами, поэтому для существования обратной функции требуется, чтобы каждый элемент из области значения имел бы единственный прообраз. Это означает, что для функции обратная функция существует тогда и только тогда, когда является биективным соответствием между своей областью определения и областью значений.

Пример 3. Функция имеет тип . Отрезок она взаимно однозначно отображает на отрезок . Поэтому для неё на отрезке существует обратная функция. Как известно, это .

Определение. Пусть даны функции и . Функция называется композицией функций и (обозначается ), если имеет место равенство: , где .

Композиция функций и представляет собой последовательное применение этих функций; применяется к результату .Часто говорят, что функция получена подстановкой в .

Для многоместных функций возможны различные варианты подстановок в , дающие функции различных типов. Особый интерес представляет случай, когда задано множество функций типа: . В этом случае возможны, во-первых, любые подстановки функций друг в друга, а во-вторых, любые переименования аргументов. Функция, полученная из данных функций некоторой подстановкой их друг в друга и переименованием аргументов, называется их суперпозицией.

Например, в математическом анализе вводится понятие элементарной функции, являющейся суперпозицией фиксированного (не зависящего от значения аргумента) числа арифметических операций, а также элементарных функций ( и т. п.).

А.Н. Колмогоровым и В.И. Арнольдом доказано, что всякая непрерывная функция переменных представима в виде суперпозиции непрерывных функций двух переменных.

Замечание. Понятие функции широко используется в математическом анализе, более того, является в нём базовым понятием. В целом, подход к пониманию термина “функция” в матанализе несколько уже, чем в дискретной математике. Как правило, в нём рассматриваются так называемые вычислимые функции. Функция называется вычислимой, если задана процедура, позволяющая по любому заданному значению аргумента найти значение функции.

Назад, в начало конспекта.

Пример 1.

а) Отношение равенства (часто обозначается ) на любом множестве является отношением эквивалентности. Равенство – это минимальное отношение эквивалентности в том смысле, что при удалении любой пары из этого отношения (то есть любой единицы на главной диагонали матрицы ) оно перестаёт быть рефлексивным и, следовательно, уже не является эквивалентностью.

б) Утверждения вида или , состоящие из формул, соединённых знаком равенства, задают бинарное отношение на множестве формул, описывающих суперпозиции элементарных функций. Это отношение обычно называется отношением равносильности и определяется следующим образом: две формулы равносильны, если они задают одну и ту же функцию. Равносильность в данном случае, хотя и обозначена знаком “=”, означает не то же самое, что отношение равенства, так как оно может выполняться для различных формул. Впрочем, можно считать, что знак равенства в таких отношениях относится не к самим формулам, а к функциям, которые ими описываются. Для формул же отношение равенства – это совпадение формул по написанию. Оно называется графическим равенством. Кстати, чтобы в подобных ситуациях избежать разночтений, часто для обозначения отношения равносильности используют знак “ ”.

в) Рассмотрим множество треугольников на координатной плоскости, считая, что треугольник задан, если даны координаты его вершин. Два треугольника будем считать равными (конгруэнтными), если при наложении они совпадают, то есть, переведены друг в друга с помощью некоторого перемещения. Равенство является отношением эквивалентности на множестве треугольников.

г) Отношение “иметь один и тот же остаток отделения на натуральное число ” на множестве натуральных чисел является отношением эквивалентности.

е) Отношение “быть делителем” не является на множестве отношением эквивалентности. Оно обладает свойствами рефлексивности и транзитивности, но является антисимметричным (см. ниже).

Пусть на множестве задано отношение эквивалентности . Осуществим следующее построение. Выберем элемент и образуем класс (подмножество ), состоящий из элемента и всех элементов, эквивалентных ему в рамках данного отношения. Затем выберем элемент и образуем класс , состоящий из и эквивалентных ему элементов. Продолжая эти действия, получим систему классов (возможно, бесконечную) такую, что любой элемент из множества входит хотя бы в один класс, то есть .

Эта система обладает следующими свойствами:

1) она образует разбиение множества , то есть классы попарно не пересекаются;

2) любые два элемента из одного класса эквивалентны;

3) любые два элемента из разных классов не эквивалентны.

Все эти свойства прямо следуют из определения отношения эквивалентности. Действительно, если бы, например, классы и пресекались, то они имели бы хотя бы один общий элемент. Этот элемент был бы, очевидно, эквивалентен и . Тогда, в силу транзитивности отношения выполнялось бы . Однако, по способу построения классов, это не возможно. Аналогично можно доказать другие два свойства.

Построенное разбиение, то есть система классов – подмножеств множества , называется системой классов эквивалентности по отношению . Мощность этой системы называется индексом разбиения . С другой стороны, любое разбиение множества на классы само определяет некоторое отношение эквивалентности, а именно отношение “входить в один класс данного разбиения”.

Пример 2.

а) Все классы эквивалентности по отношению равенства состоят из одного элемента.

б) Формулы, описывающие одну и ту же элементарную функцию, находятся в одном классе эквивалентности по отношению равносильности. В данном случае счётными являются само множество формул, множество классов эквивалентности (то есть индекс разбиения) и каждый класс эквивалентности.

в) Разбиение множества треугольников по отношению равенства имеет континуальный индекс, причём каждый класс имеет также мощность континуум.

г) Разбиение множества натуральных чисел по отношению “иметь общий остаток при делении на 7” имеет конечный индекс 7 и состоит из семи счётных классов.

  1. Отношения порядка.

Определение 1. Отношение называется отношением нестрогого порядка , если оно является рефлексивным, антисимметричным и транзитивным.

Определение 2. Отношение называется отношением строгого порядка , если оно является антирефлексивным, антисимметричным и транзитивным.

Оба типа отношений вместе называются отношениями порядка . Элементы сравнимы по отношению порядка , если выполняется одно из двух отношений или . Множество , на котором задано отношение порядка, называется полностью упорядоченным, если любые два его элемента сравнимы. В противном случае, множество называется частично упорядоченным.

Пример 3.

а) Отношения “ ” и “ ” являются отношениями нестрогого порядка, отношения “<” и “>” – отношениями строгого порядка (на всех основных числовых множествах). Оба отношения полностью упорядочивают множества и .

б) Определим отношения “ ” и “<” на множестве следующим образом:

1) , если ;

2) , если и при этом ходя бы для одной координаты выполняется .

Тогда, например, , но и несравнимы. Таким образом, эти отношения частично упорядочивают .,

в) На системе подмножеств множества отношение включения “ ” задаёт нестрогий частичный порядок, а отношение строгого включения “ ” задаёт строгий частичный порядок. Например, , а и не сравнимы.

г) Отношение подчинённости в трудовом коллективе создаёт строгий частичный порядок. В нём, например, несравнимыми являются сотрудники различных структурных подразделений (отделов и т. п.).

д) В алфавите русского языка порядок букв зафиксирован, то есть всегда один и тот же. Тогда этот список определяет полное упорядочение букв, которое называется отношением предшествования. Обозначается ( предшествует ). На основании отношения предшествования букв построено отношение предшествования слов, определяемое примерно, таким образом, как производится сравнение двух десятичных дробей. Это отношение задаёт полное упорядочение слов в русском алфавите, которое называется лексикографическим упорядочением.

Пример 4.

а) Наиболее известным примером лексикографического упорядочения слов является упорядочение слов в словарях. Например, (так как ), поэтому слово лес расположено в словаре раньше слова лето .

б) Если рассматривать числа в позиционных системах счисления (например, в десятичной системе) как слова в алфавите цифр, то их лексикографическое упорядочение совпадает с обычным, если все сравниваемые числа имеют одинаковое количество разрядов. В общем же случае эти два вида могут не совпадать. Например, и , но , а . Для того, чтобы они совпадали, нужно уравнять число разрядов у всех сравниваемых чисел, приписывая слева нули. В данном примере при этом получим . Такое выравнивание происходит автоматически при записи целых чисел в ЭВМ.

в) Лексикографическое упорядочивание цифровых представлений дат вида 19.07.2004 (девятнадцатое июля две тысячи четвёртого года) не совпадает с естественным упорядочением дат от более ранних к более поздним. Например, дата 19.07.2004 “лексикографически” старше восемнадцатого числа любого года. Чтобы возрастание дат совпадало с лексикографическим упорядочением, обычное представление надо “перевернуть”, то есть записать в виде 2004.07.19. так обычно делают при представлении дат в памяти ЭВМ.

Пусть r Í Х х Y .

Функциональное отношение – это такое бинарное отношение r, у которого каждому элементу соответствует ровно один такой, что пара принадлежит отношению или такого не существует совсем : или.

Функциональное отношение – это такое бинарное отношение r, длякоторого выполняется: .

Всюду определённое отношение – бинарное отношение r , для которого D r =Х ("нет одиноких х ").

Сюръективное отношение – бинарное отношение r , для которого J r = Y ("нет одиноких y ").

Инъективное отношение – бинарное отношение, в котором разным х соответствуют разные у .

Биекция – функциональное, всюду определённое, инъективное, сюръективное отношение, задаёт взаимно однозначное соответствие множеств.


Например :

Пусть r = { (x, y) Î R 2 | y 2 + x 2 = 1, y > 0 }.

Отношение r - функционально,

не всюду определено ("есть одинокие х "),

не инъективно (есть разные х, у ),

не сюръективно ("есть одинокие у "),

не биекция.

Например:

Пусть Ã= {(x,y) Î R 2 | y = x+1}

Отношение Ã- функционально,

Отношение Ã- всюду определено ("нет одиноких х "),

Отношение Ã- инъективно (нет разных х, которым соответствуют одинаковые у ),

Отношение Ã- сюръективно ("нет одиноких у "),

Отношение Ã- биективно, взаимно-однородное соответствие.

Например:

Пусть j={(1,2), (2,3), (1,3), (3,4), (2,4), (1,4)} задано на множестве N 4 .

Отношение j - не функционально, x=1 соответствует три y: (1,2), (1,3), (1,4)

Отношение j - не всюду определенно D j ={1,2,3}¹ N 4

Отношение j - не сюръективно I j ={1,2,3}¹ N 4

Отношение j - не инъективно, разным x соответствуют одинаковые y, например (2,3) и (1,3).

Задание к лабораторной работе

1. Заданы множества N1 и N2 . Вычислить множества:

(N1 хN2) Ç (N2 хN1) ;

(N1 хN2) È (N2 хN1) ;

(N1 Ç N2) x(N1 Ç N2) ;

(N1 È N2) x(N1 È N2) ,

где N1 = { цифры номера зачетной книжки, три последние};

N2 = { цифры даты и номера месяца рождения}.

2. Отношения r иg заданы на множествеN 6 ={1,2,3,4,5,6}.

Описать отношения r ,g ,r -1 , r g, r - 1 ○g списком пар.

Найти матрицы отношений r иg .

Для каждого отношения определить область определения и область значений.

Определить свойства отношений.

Выделить отношения эквивалентности и построить классы эквивалентности.

Выделить отношения порядка и классифицировать их.

1) r = { (m ,n ) | m > n }

g = { (m ,n ) | сравнение по модулю 2}

2) r = { (m ,n ) | (m - n) делится на 2}

g = { (m ,n ) | m делитель n }

3) r = { (m ,n ) | m < n }

g = { (m ,n ) | сравнение по модулю 3}

4) r = { (m ,n ) | (m + n) - четно}

g = { (m ,n ) | m 2 =n }

5) r = { (m ,n ) | m / n - степень 2 }

g = { (m ,n ) | m = n }

6) r = { (m ,n ) | m / n - четно}

g = { (m ,n ) | m ³n }

7) r = { (m ,n ) | m / n - нечетно }

g = { (m ,n ) | сравнение по модулю 4}

8) r = { (m ,n ) | m * n - четно }

g = { (m ,n ) | m £n }

9) r = { (m ,n ) | сравнение по модулю 5}

g = { (m ,n ) | m делится наn }

10) r = { (m ,n ) | m - четно, n - четно}

g = { (m ,n ) | m делительn }

11) r = { (m ,n ) | m = n }

g = { (m ,n ) | (m + n) £5 }

12) r ={ (m ,n ) | m и n имеют одинаковый остаток от деления на 3}

g = { (m ,n ) | (m -n) ³2}

13) r = { (m ,n ) | (m + n) делится нацело на 2 }

g = { (m ,n ) | 2 £(m -n) £4}

14) r = { (m ,n ) | (m + n) делится нацело на 3 }

g = { (m ,n ) | m ¹n }

15) r = { (m ,n ) | m и n имеют общий делитель }

g = { (m ,n ) | m 2 £n }

16) r = { (m ,n ) | (m - n) делится нацело на 2 }

g = { (m ,n ) | m < n +2 }

17) r = { (m ,n ) | сравнение по модулю 4 }

g = { (m ,n ) | m £n }

18) r = { (m ,n ) | m делится нацело наn }

g = { (m ,n ) | m ¹n , m- четно}

19) r = { (m ,n ) | сравнение по модулю 3 }

g = { (m ,n ) | 1 £(m -n) £3}

20) r = { (m ,n ) | (m - n) делится нацело на 4 }

g = { (m ,n ) | m ¹n }

21) r = { (m ,n ) | m - нечетно, n - нечетно}

g = { (m ,n ) | m £n , n- четно}

22) r = { (m ,n ) | m и n имеют нечетный остаток от деления на 3 }

g = { (m ,n ) | (m -n) ³1}

23) r = { (m ,n ) | m * n - нечетно }

g = { (m ,n ) | сравнение по модулю 2}

24) r = { (m ,n ) | m * n - четно }

g = { (m ,n ) | 1 £(m -n) £3}

25) r = { (m ,n ) | (m + n) - четно}

g = { (m ,n ) | m не делится нацело на n }

26) r = { (m ,n ) | m = n }

g = { (m ,n ) | m делится нацело на n }

27) r = { (m ,n ) | (m - n)- четно}

g = { (m ,n ) | m делитель n }

28) r = { (m ,n ) | (m -n) ³2}

g = { (m ,n ) | m делится нацело на n }

29) r = { (m ,n ) | m 2 ³ n }

g = { (m ,n ) | m / n - нечетно}

30) r = { (m ,n ) | m ³n, m - четно}

g = { (m ,n ) | m и n имеют общий делитель, отличный от 1}

3. Определить является ли заданное отношение f - функциональным, всюду определенным, инъективным, сюръективным, биекцией (R - множество вещественных чисел). Построить график отношения, определить область определения и область значений.

Выполнить это же задание для отношений r и g из пункта 3 лабораторной работы.

1) f={ (x, y) Î R 2 | y=1/x +7x }

2) f={ (x, y) Î R 2 | x ³y }

3) f={ (x, y) Î R 2 | y ³x }

4) f={ (x, y) Î R 2 | y ³x, x ³ 0 }

5) f={ (x, y) Î R 2 | y 2 + x 2 = 1 }

6) f={ (x, y) Î R 2 | 2 | y | + | x | = 1 }

7) f={ (x, y) Î R 2 | x + y £ 1 }

8) f={ (x, y) Î R 2 | x = y 2 }

9) f={ (x, y) Î R 2 | y = x 3 + 1}

10) f={ (x, y) Î R 2 | y = -x 2 }

11) f={ (x, y) Î R 2 | | y | + | x | = 1 }

12) f={ (x, y) Î R 2 | x = y -2 }

13) f={ (x, y) Î R 2 | y 2 + x 2 ³1, y > 0 }

14) f={ (x, y) Î R 2 | y 2 + x 2 = 1, x > 0 }

15) f={ (x, y) Î R 2 | y 2 + x 2 £ 1, x > 0 }

16) f={ (x, y) Î R 2 | x = y 2 ,x ³ 0 }

17) f={ (x, y) Î R 2 | y = sin(3x + p) }

18) f={ (x, y) Î R 2 | y = 1 /cos x }

19) f={ (x, y) Î R 2 | y = 2| x | + 3 }

20) f={ (x, y) Î R 2 | y = | 2x + 1| }

21) f={ (x, y) Î R 2 | y = 3 x }

22) f={ (x, y) Î R 2 | y = e -x }

23) f ={ (x, y) Î R 2 | y = e | x | }

24) f={ (x, y) Î R 2 | y = cos(3x) - 2 }

25) f={ (x, y) Î R 2 | y = 3x 2 - 2 }

26) f={ (x, y) Î R 2 | y = 1 / (x + 2) }

27) f={ (x, y) Î R 2 | y = ln(2x) - 2 }

28) f={ (x, y) Î R 2 | y = | 4x -1| + 2 }

29) f={ (x, y) Î R 2 | y = 1 / (x 2 +2x-5)}

30) f={ (x, y) Î R 2 | x = y 3 , y ³ - 2 }.

Контрольные вопросы

2.Определение бинарного отношения.

3.Способы описания бинарных отношений.

4.Область определения и область значений.

5.Свойства бинарных отношений.

6.Отношение эквивалентности и классы эквивалентности.

7.Отношения порядка: строгого и нестрого, полного и частичного.

8.Классы вычетов по модулю m.

9.Функциональные отношения.

10. Инъекция, сюръекция, биекция.


Лабораторная работа № 3

В данном подразделе мы вводим декартовы произведения, отношения, функции и графы. Изучаем свойства этих математических моделей и связи между ними.

Декартово произведение и перечисление его элементов

Декартовым произведением множеств A и B называется множество, состоящее из упорядоченных пар: A ´ B = {(a ,b ): (a Î A ) & (b Î B )}.

Для множеств A 1 , …, A n декартово произведение определяется по индукции:

В случае произвольного множества индексов I декартово произведение семейства множеств {A i } i Î I определяется как множество, состоящее из таких функций f: I ® A i , что для всех i Î I верно f(i) Î A i .

Теорема 1

Пусть A и B – конечные множества. Тогда | A ´B| = | A| ×| B|.

Доказательство

Пусть A = { a 1 , …, a m } , B = { b 1 , …, b n } . Элементы декартового произведения можно расположить с помощью таблицы

(a 1 ,b 1), (a 1 ,b 2), …, (a 1 ,b n) ;

(a 2 ,b 1), (a 2 ,b 2), …, (a 2 ,b n) ;

(a m ,b 1), (a m ,b 2),…, (a m ,b n) ,

состоящей из n столбцов, каждый из которых состоит из m элементов. Отсюда | A ´B|= mn .

Следствие 1

Доказательство

C помощью индукции по n . Пусть формула верна для n . Тогда

Отношения

Пусть n ³1 – положительное целое число и A 1 , …, A n – произвольные множества. Отношением между элементами множеств A 1 , …, A n или n-арным отношением называется произвольное подмножество .

Бинарные отношения и функции

Бинарным отношением между элементами множеств A и B (или, коротко, между A и B ) называется подмножество R Í A ´B .

Определение 1

Функцией или отображением называется тройка, состоящая из множеств A и B и подмножества f Í A ´ B (графика функции ), удовлетворяющего следующим двум условиям;

1) для любого x Î A существует такой y Î f , что (x, y) Î f ;

2) если (x, y) Î f и (x, z) Î f , то y = z.

Легко видеть, что f Í A ´ B будет тогда и только определять функцию, когда для любого x Î A существует единственный y Î f , что (x ,y ) Î f . Этот y обозначим через f (x ).

Функция называется инъекцией , если для любых x, x’ Î A , таких что x ¹ x’ , имеет место f(x) ¹ f(x’) . Функция называется сюръекцией , если для каждого y Î B существует такой x Î A , что f (x ) = y . Если функция является инъекцией и сюръекцией, то она называется биекцией .

Теорема 2

Для того чтобы функция была биекцией, необходимо и достаточно существования такой функции , что fg = Id B и gf = Id A .

Доказательство

Пусть f – биекция. В силу сюръективности f для каждого y Î B можно выбрать элемент x Î A , для которого f (x ) = y . В силу инъективности f , этот элемент будет единственным, и мы обозначим его через g (y ) = x . Получим функцию .

По построению функции g , имеют место равенства f (g (y )) = y и g (f (x )) = x . Значит, верно fg = Id B и gf = Id A . Обратное очевидно: если fg = Id B и gf = Id A , то f – сюръекция в силу f (g (y )) = y , для каждого y Î B . В этом случае из будет следовать , и значит . Следовательно, f – инъекция. Отсюда вытекает, что f – биекция.

Образ и прообраз

Пусть – функция. Образом подмножества X Í A называется подмножество f(X) = { f(x): x Î X} Í B. Для Y Í B подмножество f - -1 (Y) ={ x Î A: f(x) Î Y} называется прообразом подмножества Y .

Отношения и графы

Бинарные отношения можно наглядно показать с помощью ориентированных графов .

Определение 2

Ориентированным графом называется пара множеств (E, V) вместе с парой отображений s, t: E ® V . Элементы множества V изображаются точками на плоскости и называются вершинами . Элементы из E называются направленными ребрами или стрелками . Каждый элемент e Î E изображается в виде стрелки (возможно, криволинейной), соединяющей вершину s(e) с вершиной t(e) .

Произвольному бинарному отношению R Í V ´ V соответствует ориентированный граф с вершинами v Î V , стрелками которого являются упорядоченные пары (u, v) Î R . Отображения s, t: R ® V определяются по формулам:

s(u, v) = u и t(u, v) = v .

Пример 1

Пусть V = {1,2,3,4} .


Рассмотрим отношение

R = {(1,1), (1,3), (1.4), (2,2), (2,3), (2,4), (3,3), (4,4)} .

Ему будет соответствовать ориентированный граф (рис. 1.2). Стрелками этого граф будут пары (i, j) Î R .

Рис. 1.2. Ориентированный граф бинарного отношения

В полученном ориентированном графе любая пара вершин соединяется не более чем одной стрелкой. Такие ориентированные графы называются простыми . Если не рассматривать направление стрелок, то мы приходим к следующему определению:

Определение 3

Простым (неориентированным) графом G = (V, E) называется пара, состоящая из множества V и множества E , состоящего из некоторых неупорядоченных пар {v 1 , v 2 } элементов v 1 , v 2 Î V таких, что v 1 ¹ v 2 . Эти пары называются ребрами , а элементы из V вершинами .

Рис. 1.3. Простой неориентированный граф K 4

Множество E определяет бинарное симметричное антирефлексивное отношение, состоящее из пар (v 1 , v 2 ), для которых {v 1 , v 2 } Î E . Вершины простого графа изображаются как точки, а ребра – как отрезки. На рис. 1.3 изображен простой граф с множеством вершин

V = {1, 2, 3, 4}

и множеством ребер

E = {{1,2}, {1,3},{1,4}, {2,3}, {2,4}, {3, 4}}.

Операции над бинарными отношениями

Бинарным отношением между элементами множеств A и B называется произвольное подмножество R Í A ´ B . Запись aRb (при a Î A , b Î B ) означает, что (a, b) Î R .

Определены следующие операции над отношениями R Í A ´ A :

· R -1 = {(a,b): (b,a) Î R} ;

· R ° S = {(a,b): ($ x Î A)(a,x) Î R & (x,b) Î R} ;

· R n = R °(R n -1) ;

Пусть Id A = {(a, a): a Î A} – тождественное отношение. Отношение R Í X ´ X называется:

1) рефлексивным , если (a, a) Î R для всех a Î X ;

2) антирефлексивным , если (a, a) Ï R для всех a Î X ;

3) симметричным , если для всех a, b Î X верна импликация aRb Þ bRa ;

4) антисимметричным , если aRb & bRa Þ a= b ;

5) транзитивным , если для всех a, b, c Î X верна импликация aRb & bRc Þ aRc ;

6) линейным , для всех a, b Î X верна импликация a ¹ b Þ aRb Ú bRa .

Обозначим Id A через Id . Легко видеть, что имеет место следующее.

Предложение 1

Отношение R Í X ´ X :

1) рефлексивно Û Id Í R ;

2) антирефлексивно Û R Ç Id= Æ ;

3) симметрично Û R = R -1 ;

4) антисимметрично Û R Ç R -1 Í Id ;

5) транзитивно Û R ° R Í R ;

6) линейно Û R È Id È R -1 = X ´ X .

Матрица бинарного отношения

Пусть A = {a 1 , a 2 , …, a m } и B = {b 1 , b 2 , …, b n } – конечные множества. Матрицей бинарного отношения R Í A ´ B называется матрица с коэффициентами:

Пусть A – конечное множество, |A | = n и B = A . Рассмотрим алгоритм вычисления матрицы композиции T = R ° S отношений R , S Í A ´ A . Обозначим коэффициенты матриц отношений R , S и T соответственно через r ij , s ij и t ij .

Поскольку свойство (a i ,a k T равносильно существованию такого a j Î A , что (a i ,a j R и (a j ,a k ) Î S , то коэффициент t ik будет равен 1, если и только если существует такой индекс j , что r ij = 1 и s jk = 1. В остальных случаях t ik равен 0. Следовательно, t ik = 1 тогда и только тогда, когда .

Отсюда вытекает, что для нахождения матрицы композиции отношений нужно перемножить эти матрицы и в полученном произведении матриц ненулевые коэффициенты заменить на единицы. Следующий пример показывает, как этим способом вычисляется матрица композиции.

Пример 2

Рассмотрим бинарное отношение на A = {1,2,3} , равное R = {(1,2),(2,3)} . Запишем матрицу отношения R . Согласно определению, она состоит из коэффициентов r 12 = 1, r 23 = 1 и остальных r ij = 0. Отсюда матрица отношения R равна:

Найдем отношение R ° R . С этой целью умножим матрицу отношения R на себя:

.

Получаем матрицу отношения:

Следовательно, R ° R = {(1,2),(1,3),(2,3)}.

Из предложения 1 вытекает следующее следствие.

Следствие 2

Если A = B , то отношение R на A :

1) рефлексивно, если и только если все элементы главной диагонали матрицы отношения R равны 1;

2) антирефлексивно, если и только если все элементы главной диагонали матрицы отношения R равны 0;

3) симметрично, если и только если матрица отношения R симметрична;

4) транзитивно, если и только если каждый коэффициент матрицы отношения R ° R не больше соответствующего коэффициента матрицы отношения R.

Упражнения.

1) С помощью формулы бинома Ньютона при a = 1, b = i вычислить +++…, +++…, +++…, +++…

2) С помощью формулы Муавра вычислить устно sin 4j и cos 5j .

Лекция 3.

  1. СООТВЕТСТВИЯ. ФУНКЦИИ. ОТНОШЕНИЯ. ОТНОШЕНИЕ ЭКВИВАЛЕНТНОСТИ

Определение. Будем говорить, что на множестве Х задано бинарное отношение R , если " x, y Î X мы можем определить (по какому-нибудь правилу) находятся эти элементы в отношении R или нет.

Определим понятие отношения более строго.

Введем понятие декартова (прямого) произведение A´B произвольных множеств A и B.

По определению A´B = { (a, b), a Î A , bÎ B}. Аналогично определяется декартово произведение 3-х, 4-х и произвольного числа множеств. По определению A´A´ …´A = A n .

Определения .

1. Соответствием S из множества A в множество B называется подмножество S Í A´B. Тот факт, что элементы aÎ A, bÎ B находятся в соответствии S, мы будем записывать в виде (a, b) Î S или в виде aSb.

2. Естественным образом для соответствий S 1 и S 2 определяются S 1 ∩S 2 и S 1 U S 2 – как пересечение и объединение подмножеств. Как и для любых подмножеств определяется понятие включения соответствий S 1 Í S 2 . Так S 1 Í S 2 Û

из a S 1 b Þ a S 2 b.

3. Для соответствий S 1 Í A´B и S 2 Í B´C определим композицию соответствий S 1 *S 2 Í A´С. Будем считать, что для элементов aÎ A, сÎ С по определению a S 1 *S 2 с Û $ bÎ B такой, что a S 1 b и b S 2 с.

4. Для соответствия S Í A´B определим соответствие

S -1 Í B´A так: по определению bS -1 a Û a S b.

5. Пусть по определению соответствие D A Í A´A,

D A ={(a,a), aÎ A}.

6. Соответствие F из множества A в множество B называется функцией, определенной на A, со значениями в B (или отображением из A в B ), если " aÎ A $! bÎ B такой, что aFb. В этом случае будем писать также aF = b или, более привычно, Fa = b. В этом определении функция отождествляется со своим графиком. В наших обозначениях aF 1 *F 2 с можно записать в виде с = (aF 1)F 2 . Композиция F 2 F 1 функций означает по определению, что (F 2 F 1)(a)= F 2 (F 1 (a)). Таким образом, F 2 F 1 = F 1 *F 2 .

7. Для отображения F из A в B образом подмножества A 1 Í A

называется подмножество F(A 1)= {F(a)| aÎ A 1 } Í B, а прообразом подмножества B 1 Í B называется подмножество

F -1 (B 1)= { aÎ A | F(a) Î B 1 } Í A .

8. Отображение F из A в B называется инъекцией , если из

a 1 ¹ a 2 Þ Fa 1 ¹ Fa 2 .



9. Отображение F из A в B называется сюръекцией , если

" bÎ B $ aÎ A такой, что Fa = b.

10. Отображение F из A в B называется биекцией или взаимнооднозначным отображением , если F – инъекция и сюръекция одновременно.

11. Биекция конечного (а иногда и бесконечного) множества называется подстановкой .

12. Бинарным отношением на множестве Х называется подмножество R Í X´X. Тот факт, что элементы x, y Î X находятся в отношении R, мы будем записывать в виде (x, y) Î R или в виде xRy.