Момент инерции. Момент инерции математической точки, тело относительно неподвижной оси(от чего зависить) Момент инерции тела относительно собственной оси

Пусть имеется твердое тело. Выберем некоторую прямую ОО (рис.6.1), которую будем называть осью (прямая OO может быть и вне тела). Разобьем тело на элементарные участки (материальные точки) массами
, находящиеся от оси на расстоянии
соответственно.

Моментом инерции материальной точки относительно оси (OO) называется произведение массы материальной точки на квадрат ее расстояния до этой оси:


. (6.1)

Моментом инерции (МИ) тела относительно оси (OO) называется сумма произведений масс элементарных участков тела на квадрат их расстояния до оси:

. (6.2)

Как видно момент инерции тела есть величина аддитивная – момент инерции всего тела относительно некоторой оси равен сумме моментов инерции отдельных его частей относительно той же оси.

В данном случае

.

Измеряется момент инерции в кгм 2 . Так как

, (6.3)

где  – плотность вещества,
– объемi - го участка, то

,

или, переходя к бесконечно малым элементам,

. (6.4)

Формулу (6.4) удобно использовать для вычисления МИ однородных тел правильной формы относительно оси симметрии, проходящей через центр масс тела. Например, для МИ цилиндра относительно оси, проходящей через центр масс параллельно образующей, эта формула дает

,

где т - масса; R - радиус цилиндра.

Большую помощь при вычислении МИ тел относительно некоторых осей оказывает теорема Штейнера: МИ тела I относительно любой оси равен сумме МИ этого тела I c относительно оси, проходящей через центр масс тела и параллельной данной, и произведения массы тела на квадрат расстояния d между указанными осями:

. (6.5)

Момент силы относительно оси

Пусть на тело действует сила F . Примем для простоты, что сила F лежит в плоскости, перпендикулярной некоторой прямой ОО (рис.6.2,а ), которую назовем осью (например, это ось вращения тела). На рис. 6.2,а А - точка приложения силы F ,
- точка пересечения оси с плоскостью, в которой лежит сила;r - радиус-вектор, определяющий положение точки А относительно точки О "; O "B = b - плечо силы. Плечом силы относительно оси называется наименьшее расстояние от оси до прямой, на которой лежит вектор силы F (длина перпендикуляра, проведенного из точки к этой прямой).

Моментом силы относительно оси называется векторная величина, определяемая равенством

. (6.6)

Модуль этого вектора . Иногда, поэтому говорят, что момент силы относительно оси – это произведение силы на ее плечо.

Если сила F направлена произвольно, то ее можно разложить на две составляющие; и(рис.6.2,б ), т.е.
+, где- составляющая, направленная параллельно оси ОО, алежит в плоскости, перпендикулярной оси. В этом случае под моментом силыF относительно оси OO понимают вектор

. (6.7)

В соответствии с выражениями (6.6) и (6.7) вектор М направлен вдоль оси (см. рис.6.2, а ,б ).

Момент импульса тела относительно оси вращения

Пусть тело вращается вокруг некоторой оси ОО с угловой скоростью
. Разобьем это тело мысленно на элементарные участки с массами
, которые находятся от оси соответственно на расстояниях
и вращаются по окружностям, имея линейные скорости
Известно, что величина равная
- есть импульсi -участка. Моментом импульса i -участка (материальной точки) относительно оси вращения называется вектор (точнее псевдовектор)

, (6.8)

где r i – радиус-вектор, определяющий положение i - участка относительно оси.

Моментом импульса всего тела относительно оси вращения называют вектор

(6.9)

модуль которого
.

В соответствии с выражениями (6.8) и (6.9) векторы
инаправлены по оси вращения (рис.6.3). Легко показать, что момент импульса тела L относительно оси вращения и момент инерции I этого тела относительно той же оси связаны соотношением

. (6.10)

Найдем момент инерции тела относительно оси u , проходящей через некоторую точку О (рис. 36).

Рис.36

По определению момент инерции .

Поместим в точку О начало координатных осей x, y, z . Из прямоугольного треугольника ОАМ i следует , где . И так как радиус-вектор точки , то, проектируя это равенство на ось u , получим ( , , - углы между осью u и осями x, y, z ).

Как известно из тригономет­рии

И, группируя подобные члены, содержащие косинусы одинаковых углов, получим:

Но - расстояния от точки М i до осей x, y, z, соответственно. Поэтому

где I x , I y , I z – моменты инерции тела относительно осей координат; I xy , J yz , J xz - центробежные моменты инерции относительно осей отмеченных в индексах.

Если два центробежных момента инерции, оба содержащих в индексах названия какой-нибудь одной оси, равны нулю, то эта ось называется главной осью инерции . Например, если J yz = 0 и J xz = 0, то ось z – главная ось инерции.

Так как все моменты инерции зависят от того, где находится точка О , от выбора начала координат, то обязательно надо указать для какой точки определены эти моменты инерции. Если начало координат взято в центре масс С , то все главные оси инерции называются главными центральными осями инерции.

Если в данной точке координатные оси являются главными осями инерции (центробежные моменты инерции относительно их равны нулю), то формула (2) упрощается:

Иногда по некоторым признакам нетрудно найти главные оси инерции тела.

1. Если у однородного тела имеется ось симметрии, то эта ось является главной центральной осью инерции.

Действительно. Направим координатную ось z по оси симметрии. Тогда для каждой точки тела с координатами (x i , y i , z i ) можно отыскать точку с координатами (-x i , -y i , -z i ) и поэтому центробежные моменты инерции и . Значит ось z – главная ось инерции, и центральная ось, т.к. центр масс, как известно, находится на оси симметрии. Причём, эта ось будет главной для любой точки расположенной на оси симметрии.

2. Если у однородного тела имеется плоскость симметрии, то любая ось перпендикулярная ей будет главной осью инерции для всех точек этой плоскости.

Направим ось z перпендикулярно плоскости симметрии из любой её точки О , назначив там начало координат. Тогда для каждой точки тела с координатами (x i , y i , z i ) можно найти симметричную ей точку с координатами (x i , y i , - z i ). Поэтому центробежные моменты инерции I xz и I yz будут равны нулю. Значит ось z – главная ось инерции.

Пример 9. Определим момент инерции диска относительно оси u , расположенной под углом к оси симметрии диска z (рис.37).


Рис.37

Оси x, y и z – главные центральные оси инерции, т.к. они являются осями симметрии.

Тогда , где - угол между осями u и z ; угол - угол между осями u и y , равный ; угол - угол между осями u и x , равный 90°. Поэтому

Дифференциальные уравнения движения системы.

Рас­смотрим систему, состоящую из п материальных точек. Выделим какую-нибудь точку системы с массой . Обозначим равнодейству­ющую всех приложенных к точке внешних сил (и активных и реак­ций связей) через , а равнодействующую всех внутренних сил - через . Если точка имеет при этом ускорение , то по основному закону динамики

Аналогичный результат получим для любой точки. Следовательно, для всей системы будет:

Эти уравнения, из которых можно определить закон движения каждой точки системы, называются дифференциальными уравнениями движения системы в векторной форме. Уравнения являются дифференциальными, так как ; входящие в правые части уравнений силы будут в общем случае зависеть от времени, координат точек системы и их скоростей.

Проектируя на какие-нибудь координатные оси, мы можем получить дифференциальные уравнения движения системы в проекциях на эти оси.

Полное решение основной задачи динамики для системы состояло бы в том, чтобы, зная заданные силы, проинтегрировать соответ­ствующие дифференциальные уравнения и определить таким путем закон движения каждой из точек системы в отдельности.

Однако такой путь решения обычно не применяется по двум причинам. Во-первых, этот путь слишком сложен и почти всегда связан с непреодолимыми математическими трудностями. Во-вторых, в большинстве случаев при решении задач механики бывает доста­точно знать некоторые суммарные характеристики движения системы в целом, а не движение каждой из ее точек в отдельности. Эти суммарные характеристики определяются с помощью общих теорем динамики системы, к изучению которых мы и перейдем.

Основная роль уравнений состоит в том, что они, или след­ствия из них, являются исходными для получения соответствующих общих теорем.

Общие теоремы динамики механической системы: теоремы о движении центра масс механической системы и об изменении количества движения, теоремы об изменении кинетического момента и кинетической энергии, -являются следствием основного уравнения динамики. Данные теоремы рассматривают не движение отдельных точек и тел, входящих в механическую систему, а некоторые интегральные характеристики, такие как движение центра масс механической системы, ее количество движения, кинетический момент и кинетическую энергию. В результате из рассмотрения исключаются неизвестные внутренние силы, а в ряде случаев и реакции связей, что существенно упрощает решения задачи.

При изучении вращения твердых тел будем пользоваться понятием момента инерции.

Разобьем тело на такие малые части, что каждую из них можно считать материальной точкой. Пусть m i – масса i- й материальной точки, r i – ее расстояние до некоторой оси O .

Величина, равная произведению массы материальной точки на квадрат кратчайшего расстояния ее до данной оси, называется моментом инерции материальной точки относительно оси:

Сумма моментов инерции всех материальных точек тела называется моментом инерции тела относительно некоторой оси:

Момент инерции твердого тела зависит, как нетрудно видеть, от распределения масс относительно интересующей нас оси.

Если тело представляет собой обруч массы m , толщина которого мала по сравнению с радиусом R , то момент его инерции относительно оси, проходящей через центр и перпендикулярной к плоскости обруча, равен

Для тел более сложной формы суммирование выражения (5.2) производится методами интегрального исчисления согласно формуле

где интегрирование производится по всему объему тела. Величина r
в этом случае есть функция положения точки с координатами x , y , z .

В качестве примера найдем момент инерции однородного диска относительно оси, перпендикулярной к плоскости диска и проходящей через его центр. Разобьем диск на кольцевые слои толщиной dr .

Все точки одного слоя будут находиться на одинаковом расстоянии от оси, равном r . Объем такого слоя равен:

,

где b – толщина диска. Поскольку диск однороден, плотность его во всех точках одинакова и

где dm – масса кольцевого слоя.

Теперь по формуле (5.4) находим момент инерции

,

где R – радиус диска;

.

Наконец, введя массу диска m равную произведению плотности на объем диска , получим

Моменты инерции некоторых однородных твердых тел относительно оси, проходящей через центр масс тела , приведены в табл. 5.1.

Таблица 5.1

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то можно найти момент инерции относительно любой другой параллельной оси. Для этого надо воспользоваться теоремой Гюйгенса – Штейнера :

момент инерции тела I относительно произвольной оси равен моменту его инерции I c относительно параллельной ей оси, проходящей через центр масс C тела, сложенному с произведением массы тела m на квадрат расстояния a между осями:

Найдем связь между моментами инерции тела относительно двух параллельных осей, одна из которых проходит через центр масс. Найдем момент инерции тела относительно оси z параллельной оси z C . Ось z C проходит через центр масс тела. Разделим мысленно тело на частицы массой m i , где i – порядковый номер. Определим положение каждой частицы относительно осей z и z C . В соответствии с определением момента инерции , где – это кратчайшее расстояние до оси вращения (радиус окружности, которую описывает точка при своем движении вокруг оси вращения).

На рис. 5.3 видно, что , тогда момент инерции точки массой m i относительно оси z равен: , а для всего тела момент инерции относительно оси z равен сумме моментов инерции всех частиц тела относительно этой же оси:

(5.7)

По определению – момент инерции тела относительно оси z C , проходящей через центр масс тела; , тогда . Выражение можно преобразовать . Величина, равная определяет положение центра масс тела относительно оси z C . Из рисунка видно, что , т.к. центр масс лежит на оси z C .

Тогда получим

(5.8)

– момент инерции I z тела относительно произвольной оси равен сумме момента инерции тела относительно параллельной ей оси z C , проходящей через центр масс, и величины ma 2 , где m – масса тела, a – расстояние между осями.

Пример. Момент инерции тонкого стержня (массы m и длины ) относительно оси, перпендикулярной стрежню и проходящей через его конец, равен.

Введенные формулами (3.26), (3.27) величины оказываются существенно необходимыми при изучении динамики вращательных движений твердого тела или системы тел. Эти характеристики инерции зависят как от положения начала координат, так и от направлений выбранных коор­динатных осей. Однако в данной точке тела шесть величин вместе с суммарной массой М пол­ностью определяют его инерцию. Иначе говоря, зная эти ве­личины, можно найти момент инерции относительно оси про­извольного направления и центробежный момент инерции для пары новых (повернутых) осей, а также, при известной геометрии тела, перейти к инерционным характеристикам, определенным для другого начала координат. Пусть требуется найти момент инерции относительного заданного направления (оси ξ ), характеризуемого ортом . Моментом инерции системы материальных точек относи­тельно оси называется сумма произведений масс этих точек на квадраты их расстояний до оси

Легко сообразить, что квадрат расстояния h, , можно подсчи­тать по формуле (рис. 53)

(3.28)

Запишем полученное выражение (3.29) иначе

Мы изменили порядок сомножителей во втором скалярном произведении и отбросили скобки; первое делать можно, а второе? При этом появилась новая величина , в которой два вектора перемножаются, но не скалярно и не векторно, а каким-то новым способом; такое умножение на­зываетсядиадным (или тензорным),а само произведение - диадой, которая представляет собой тензор второго ранга. Аналитическое определение тензора состоит в следующем: совокупность Зn величин (в трехмерном пространстве), преобразующихся при повороте координатной системы как произведения n координат, называется тензором n-го ранга. По этому определению диада будет тензором 2-го ранга, вектор -тензором 1-го ранга, а скалярная величина - тензором нулевого ранга. Очевидно, что диада не изменится при перестановке ее сомножителей - это симметричная диада. Более общий случай получим, перемножая два разных вектора, например и ; диада уже не будет симметричнойи переставлять сомножители у нее нельзя:

Так как векторы и можно представить в виде

то диада может быть записана в виде суммы девяти сла­гаемых

(3.30)

Здесь ….. элементарные диады, а коэффици­енты при них называются составляющими или компонентами тензора. Тензор второго ранга (диаду) можно записать также в виде квадратной матрицы. Так, для тензора (3.30)

(3.31)

Хотя развернутый вид (3.30) тензора и не имеет таблич­ного вида (3.31), однако положение каждой составляющей в таб­лице устанавливается сразу по ее множителю - элементар­ной диаде: левый орт указывает строку, а правый орт - стол­бец, орты соответствуют положению данной составляющей в матрице (3.31). Теперь легко понять неравенство ; пе­рестановка сомножителей в диаде означает замену строк столбцами (и наоборот) в матрице (3.31), а тензор будет транспонированным по отношению к первоначальному тен­зору .Из теории матриц известно, что квадратную матрицу (3.31) можно умножить справа на вектор-столбец или слева на вектор-строку. Запись тензора в форме (3.30) позволяет эти операции свести к скалярному умножению ортов. Тензор второго ранга можно умножить скалярно как справа, так и слева на вектор а ; при этом результат будет различным, так как при правом умножении тензора на вектор будут по­являться скалярные произведения правых ортов элементар­ных диад на орты вектора, а при левом умножении вектора на тензор в скалярных произведениях будут участвовать левые орты элементарных диад. В результате останутся орты элементарных диад, которые не участвовали в скаляр­ных произведениях, поэтому скалярное произведение тензора и вектора будет векторной величиной. Легко сообразить, что , где означает транспонированный тензор. В случае сим­метричного тензора транспонированный тензор равен перво­начальному и разница между правым и левым произведени­ями исчезает. В нашем случае симметричный тензор и его разверну­тое выражение типа (3.29) оказывается проще:

Если тензор (второго ранга) умножать скалярно на век­торы и слева, и справа, то участвовать в скалярных произве­дениях будут как левые, так и правые орты элементарных диад, и в результате получится скалярная величина. Именно это мы имеем в формуле (3.29). Записывая эту формулу в виде

где тензор представлен выше в виде (3.32), сразу понимаем, что в результате двойного скалярного перемножения в (3.33) исчезают те слагаемые, в которых встречаются произведе­ния (скалярные) разных ортов. Остающиеся слагаемые легко написать сразу; это будут те же компоненты тензора , что и представленные в формуле (3.32), только орты в этой фор­муле следует заменить на соответствующие проекции вектора . Тогда получим

Сравнивая результат (3.34) с формулой (3.38а), убеждаемся и законности опускания скобок в формуле (3.29). Простейшим тензором второго ранга будет единичный тензор:

(3.35)

Нетрудно сообразить, что диагональные элементы мат­рицы, соответствующей тензору (3.35), будут единицами, а остальные, недиагональные - нулями. Название «единич­ный тензор» совершенно оправдано, так как, умножая на него любой вектор (справа или слева - это безразлично), мы опять получим вектор :

Это свойство единичного тензора приводит к следую­щему интересному соотношению:

(3.36)

Соотношения (3.36) и (3.29) позволяют написать формулу (3.28) В ином виде

= (3.38)

Величина

= , (3.39)

вошедшая в выражение для (формула 3.38), представляет собой тензор инерции твердого тела в точке О . Вводя этот тензор, переписываем формулу (3.38) для момента инерции относи­тельно оси , заданной направлением орта , в очень про­стом виде

Тела m на квадрат расстояния d между осями :

J = J c + m d 2 , {\displaystyle J=J_{c}+md^{2},}

где m - полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

J = J c + m d 2 = 1 12 m l 2 + m (l 2) 2 = 1 3 m l 2 . {\displaystyle J=J_{c}+md^{2}={\frac {1}{12}}ml^{2}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{3}}ml^{2}.}

Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции J a
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра m r 2 {\displaystyle mr^{2}}
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра 1 2 m r 2 {\displaystyle {\frac {1}{2}}mr^{2}}
Полый толстостенный цилиндр массы m с внешним радиусом r 2 и внутренним радиусом r 1 Ось цилиндра m r 2 2 + r 1 2 2 {\displaystyle m{\frac {r_{2}^{2}+r_{1}^{2}}{2}}}
Сплошной цилиндр длины l , радиуса r и массы m 1 4 m ⋅ r 2 + 1 12 m ⋅ l 2 {\displaystyle {1 \over 4}m\cdot r^{2}+{1 \over 12}m\cdot l^{2}}
Полый тонкостенный цилиндр (кольцо) длины l , радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс 1 2 m ⋅ r 2 + 1 12 m ⋅ l 2 {\displaystyle {1 \over 2}m\cdot r^{2}+{1 \over 12}m\cdot l^{2}}
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс 1 12 m l 2 {\displaystyle {\frac {1}{12}}ml^{2}}
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец 1 3 m l 2 {\displaystyle {\frac {1}{3}}ml^{2}}
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы 2 3 m r 2 {\displaystyle {\frac {2}{3}}mr^{2}}
Шар радиуса r и массы m Ось проходит через центр шара 2 5 m r 2 {\displaystyle {\frac {2}{5}}mr^{2}}
Конус радиуса r и массы m Ось конуса 3 10 m r 2 {\displaystyle {\frac {3}{10}}mr^{2}}
Равнобедренный треугольник с высотой h , основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину 1 24 m (a 2 + 12 h 2) {\displaystyle {\frac {1}{24}}m(a^{2}+12h^{2})}
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс 1 12 m a 2 {\displaystyle {\frac {1}{12}}ma^{2}}
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс 1 6 m a 2 {\displaystyle {\frac {1}{6}}ma^{2}}
Прямоугольник со сторонами a и b и массой m Ось перпендикулярна плоскости прямоугольника и проходит через центр масс 1 12 m (a 2 + b 2) {\displaystyle {\frac {1}{12}}m(a^{2}+b^{2})}
Правильный n-угольник радиуса r и массой m Ось перпендикулярна плоскости и проходит через центр масс m r 2 6 [ 1 + 2 cos ⁡ (π / n) 2 ] {\displaystyle {\frac {mr^{2}}{6}}\left}
Тор (полый) с радиусом направляющей окружности R , радиусом образующей окружности r и массой m Ось перпендикулярна плоскости направляющей окружности тора и проходит через центр масс I = m (3 4 r 2 + R 2) {\displaystyle I=m\left({\frac {3}{4}}\,r^{2}+R^{2}\right)}

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

J = ∑ d J i = ∑ R i 2 d m . (1) . {\displaystyle J=\sum dJ_{i}=\sum R_{i}^{2}dm.\qquad (1).}

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

J = ∑ R 2 d m = R 2 ∑ d m = m R 2 . {\displaystyle J=\sum R^{2}dm=R^{2}\sum dm=mR^{2}.}

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R , внутренним радиусом R 1 , толщиной h и плотностью ρ . Разобьём его на тонкие кольца толщиной dr . Масса и момент инерции тонкого кольца радиуса r составит

d m = ρ d V = ρ ⋅ 2 π r h d r ; d J = r 2 d m = 2 π ρ h r 3 d r . {\displaystyle dm=\rho dV=\rho \cdot 2\pi rhdr;\qquad dJ=r^{2}dm=2\pi \rho hr^{3}dr.}

Момент инерции толстого кольца найдём как интеграл

J = ∫ R 1 R d J = 2 π ρ h ∫ R 1 R r 3 d r = {\displaystyle J=\int _{R_{1}}^{R}dJ=2\pi \rho h\int _{R_{1}}^{R}r^{3}dr=} = 2 π ρ h r 4 4 | R 1 R = 1 2 π ρ h (R 4 − R 1 4) = 1 2 π ρ h (R 2 − R 1 2) (R 2 + R 1 2) . {\displaystyle =2\pi \rho h\left.{\frac {r^{4}}{4}}\right|_{R_{1}}^{R}={\frac {1}{2}}\pi \rho h\left(R^{4}-R_{1}^{4}\right)={\frac {1}{2}}\pi \rho h\left(R^{2}-R_{1}^{2}\right)\left(R^{2}+R_{1}^{2}\right).}

Поскольку объём и масса кольца равны

V = π (R 2 − R 1 2) h ; m = ρ V = π ρ (R 2 − R 1 2) h , {\displaystyle V=\pi \left(R^{2}-R_{1}^{2}\right)h;\qquad m=\rho V=\pi \rho \left(R^{2}-R_{1}^{2}\right)h,}

получаем окончательную формулу для момента инерции кольца

J = 1 2 m (R 2 + R 1 2) . {\displaystyle J={\frac {1}{2}}m\left(R^{2}+R_{1}^{2}\right).}

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R 1 = 0 ), получим формулу для момента инерции цилиндра (диска):

J = 1 2 m R 2 . {\displaystyle J={\frac {1}{2}}mR^{2}.}

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh , перпендикулярные оси конуса. Радиус такого диска равен

r = R h H , {\displaystyle r={\frac {Rh}{H}},}

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

d J = 1 2 r 2 d m = 1 2 π ρ r 4 d h = 1 2 π ρ (R h H) 4 d h ; {\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {Rh}{H}}\right)^{4}dh;}

Интегрируя, получим

J = ∫ 0 H d J = 1 2 π ρ (R H) 4 ∫ 0 H h 4 d h = 1 2 π ρ (R H) 4 h 5 5 | 0 H == 1 10 π ρ R 4 H = (ρ ⋅ 1 3 π R 2 H) 3 10 R 2 = 3 10 m R 2 . {\displaystyle {\begin{aligned}J=\int _{0}^{H}dJ={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\int _{0}^{H}h^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\left.{\frac {h^{5}}{5}}\right|_{0}^{H}=={\frac {1}{10}}\pi \rho R^{4}H=\left(\rho \cdot {\frac {1}{3}}\pi R^{2}H\right){\frac {3}{10}}R^{2}={\frac {3}{10}}mR^{2}.\end{aligned}}}

Сплошной однородный шар

Вывод формулы

Разобьём шар на тонкие диски толщиной dh , перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

r = R 2 − h 2 . {\displaystyle r={\sqrt {R^{2}-h^{2}}}.}

Масса и момент инерции такого диска составят

d m = ρ d V = ρ ⋅ π r 2 d h ; {\displaystyle dm=\rho dV=\rho \cdot \pi r^{2}dh;} d J = 1 2 r 2 d m = 1 2 π ρ r 4 d h = 1 2 π ρ (R 2 − h 2) 2 d h = 1 2 π ρ (R 4 − 2 R 2 h 2 + h 4) d h . {\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left(R^{2}-h^{2}\right)^{2}dh={\frac {1}{2}}\pi \rho \left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh.}

Момент инерции шара найдём интегрированием:

J = ∫ − R R d J = 2 ∫ 0 R d J = π ρ ∫ 0 R (R 4 − 2 R 2 h 2 + h 4) d h = = π ρ (R 4 h − 2 3 R 2 h 3 + 1 5 h 5) | 0 R = π ρ (R 5 − 2 3 R 5 + 1 5 R 5) = 8 15 π ρ R 5 = = (4 3 π R 3 ρ) ⋅ 2 5 R 2 = 2 5 m R 2 . {\displaystyle {\begin{aligned}J&=\int _{-R}^{R}dJ=2\int _{0}^{R}dJ=\pi \rho \int _{0}^{R}\left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh=\\&=\pi \rho \left.\left(R^{4}h-{\frac {2}{3}}R^{2}h^{3}+{\frac {1}{5}}h^{5}\right)\right|_{0}^{R}=\pi \rho \left(R^{5}-{\frac {2}{3}}R^{5}+{\frac {1}{5}}R^{5}\right)={\frac {8}{15}}\pi \rho R^{5}=\\&=\left({\frac {4}{3}}\pi R^{3}\rho \right)\cdot {\frac {2}{5}}R^{2}={\frac {2}{5}}mR^{2}.\end{aligned}}}

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R :

J 0 = 2 5 M R 2 = 8 15 π ρ R 5 . {\displaystyle J_{0}={\frac {2}{5}}MR^{2}={\frac {8}{15}}\pi \rho R^{5}.}

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR .

J = d J 0 d R d R = d d R (8 15 π ρ R 5) d R = = 8 3 π ρ R 4 d R = (ρ ⋅ 4 π R 2 d R) 2 3 R 2 = 2 3 m R 2 . {\displaystyle {\begin{aligned}J&={\frac {dJ_{0}}{dR}}dR={\frac {d}{dR}}\left({\frac {8}{15}}\pi \rho R^{5}\right)dR=\\&={\frac {8}{3}}\pi \rho R^{4}dR=\left(\rho \cdot 4\pi R^{2}dR\right){\frac {2}{3}}R^{2}={\frac {2}{3}}mR^{2}.\end{aligned}}}

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобьём стержень на малые фрагменты длиной dr . Масса и момент инерции такого фрагмента равна

d m = m d r l ; d J = r 2 d m = m r 2 d r l . {\displaystyle dm={\frac {mdr}{l}};\qquad dJ=r^{2}dm={\frac {mr^{2}dr}{l}}.}

Интегрируя, получим

J = ∫ − l / 2 l / 2 d J = 2 ∫ 0 l / 2 d J = 2 m l ∫ 0 l / 2 r 2 d r = 2 m l r 3 3 | 0 l / 2 = 2 m l l 3 24 = 1 12 m l 2 . {\displaystyle J=\int _{-l/2}^{l/2}dJ=2\int _{0}^{l/2}dJ={\frac {2m}{l}}\int _{0}^{l/2}r^{2}dr={\frac {2m}{l}}\left.{\frac {r^{3}}{3}}\right|_{0}^{l/2}={\frac {2m}{l}}{\frac {l^{3}}{24}}={\frac {1}{12}}ml^{2}.}

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l ⁄ 2 . По теореме Штейнера новый момент инерции будет равен

J = J 0 + m r 2 = J 0 + m (l 2) 2 = 1 12 m l 2 + 1 4 m l 2 = 1 3 m l 2 . {\displaystyle J=J_{0}+mr^{2}=J_{0}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{12}}ml^{2}+{\frac {1}{4}}ml^{2}={\frac {1}{3}}ml^{2}.}

Безразмерные моменты инерции планет и спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2 ). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение доплеровского смещения радиосигнала, передаваемого АМС , пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара - 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра .

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины :

J x y = ∫ (m) x y d m = ∫ (V) x y ρ d V , {\displaystyle J_{xy}=\int \limits _{(m)}xydm=\int \limits _{(V)}xy\rho dV,} J x z = ∫ (m) x z d m = ∫ (V) x z ρ d V , {\displaystyle J_{xz}=\int \limits _{(m)}xzdm=\int \limits _{(V)}xz\rho dV,} J y z = ∫ (m) y z d m = ∫ (V) y z ρ d V , {\displaystyle J_{yz}=\int \limits _{(m)}yzdm=\int \limits _{(V)}yz\rho dV,}

где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела .

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела , а моменты инерции относительно этих осей - его главными центральными моментами инерции . Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции .

Геометрические моменты инерции

Геометрический момент инерции объёма

J V a = ∫ (V) r 2 d V , {\displaystyle J_{Va}=\int \limits _{(V)}r^{2}dV,}

где, как и ранее r - расстояние от элемента dV до оси a .

Геометрический момент инерции площади относительно оси - геометрическая характеристика тела, выражаемая формулой :

J S a = ∫ (S) r 2 d S , {\displaystyle J_{Sa}=\int \limits _{(S)}r^{2}dS,}

где интегрирование выполняется по поверхности S , а dS - элемент этой поверхности.

Размерность J Sa - длина в четвёртой степени ( d i m J S a = L 4 {\displaystyle \mathrm {dim} J_{Sa}=\mathrm {L^{4}} } ), соответственно единица измерения СИ - 4 . В строительных расчетах, литературе и сортаментах металлопроката часто указывается в см 4 .

Через геометрический момент инерции площади выражается момент сопротивления сечения:

W = J S a r m a x . {\displaystyle W={\frac {J_{Sa}}{r_{max}}}.}

Здесь r max - максимальное расстояние от поверхности до оси.

Геометрические моменты инерции площади некоторых фигур
Прямоугольника высотой h {\displaystyle h} и шириной b {\displaystyle b} : J y = b h 3 12 {\displaystyle J_{y}={\frac {bh^{3}}{12}}}

J z = h b 3 12 {\displaystyle J_{z}={\frac {hb^{3}}{12}}}

Прямоугольного коробчатого сечения высотой и шириной по внешним контурам H {\displaystyle H} и B {\displaystyle B} , а по внутренним h {\displaystyle h} и b {\displaystyle b} соответственно J z = B H 3 12 − b h 3 12 = 1 12 (B H 3 − b h 3) {\displaystyle J_{z}={\frac {BH^{3}}{12}}-{\frac {bh^{3}}{12}}={\frac {1}{12}}(BH^{3}-bh^{3})}

J y = H B 3 12 − h b 3 12 = 1 12 (H B 3 − h b 3) {\displaystyle J_{y}={\frac {HB^{3}}{12}}-{\frac {hb^{3}}{12}}={\frac {1}{12}}(HB^{3}-hb^{3})}

Круга диаметром d {\displaystyle d} J y = J z = π d 4 64 {\displaystyle J_{y}=J_{z}={\frac {\pi d^{4}}{64}}}

Момент инерции относительно плоскости

Моментом инерции твёрдого тела относительно некоторой плоскости называют скалярную величину, равную сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до рассматриваемой плоскости .

Если через произвольную точку O {\displaystyle O} провести координатные оси x , y , z {\displaystyle x,y,z} , то моменты инерции относительно координатных плоскостей x O y {\displaystyle xOy} , y O z {\displaystyle yOz} и z O x {\displaystyle zOx} будут выражаться формулами:

J x O y = ∑ i = 1 n m i z i 2 , {\displaystyle J_{xOy}=\sum _{i=1}^{n}m_{i}z_{i}^{2}\ ,} J y O z = ∑ i = 1 n m i x i 2 , {\displaystyle J_{yOz}=\sum _{i=1}^{n}m_{i}x_{i}^{2}\ ,} J z O x = ∑ i = 1 n m i y i 2 . {\displaystyle J_{zOx}=\sum _{i=1}^{n}m_{i}y_{i}^{2}\ .}

В случае сплошного тела суммирование заменяется интегрированием.

Центральный момент инерции

Центральный момент инерции (момент инерции относительно точки O, момент инерции относительно полюса, полярный момент инерции ) J O {\displaystyle J_{O}} - это величина, определяемая выражением :

J a = ∫ (m) r 2 d m = ∫ (V) ρ r 2 d V , {\displaystyle J_{a}=\int \limits _{(m)}r^{2}dm=\int \limits _{(V)}\rho r^{2}dV,}

Центральный момент инерции можно выразить через главные осевые моменты инерции, а также через моменты инерции относительно плоскостей :

J O = 1 2 (J x + J y + J z) , {\displaystyle J_{O}={\frac {1}{2}}\left(J_{x}+J_{y}+J_{z}\right),} J O = J x O y + J y O z + J x O z . {\displaystyle J_{O}=J_{xOy}+J_{yOz}+J_{xOz}.}

Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором s → = ‖ s x , s y , s z ‖ T , | s → | = 1 {\displaystyle {\vec {s}}=\left\Vert s_{x},s_{y},s_{z}\right\Vert ^{T},\left\vert {\vec {s}}\right\vert =1} , можно представить в виде квадратичной (билинейной) формы :

I s = s → T ⋅ J ^ ⋅ s → , {\displaystyle I_{s}={\vec {s}}^{T}\cdot {\hat {J}}\cdot {\vec {s}},\qquad } (1)

где - тензор инерции . Матрица тензора инерции симметрична, имеет размеры 3 × 3 {\displaystyle 3\times 3} и состоит из компонент центробежных моментов:

J ^ = ‖ J x x − J x y − J x z − J y x J y y − J y z − J z x − J z y J z z ‖ , {\displaystyle {\hat {J}}=\left\Vert {\begin{array}{ccc}J_{xx}&-J_{xy}&-J_{xz}\\-J_{yx}&J_{yy}&-J_{yz}\\-J_{zx}&-J_{zy}&J_{zz}\end{array}}\right\Vert ,} J x y = J y x , J x z = J z x , J z y = J y z , {\displaystyle J_{xy}=J_{yx},\quad J_{xz}=J_{zx},\quad J_{zy}=J_{yz},\quad } J x x = ∫ (m) (y 2 + z 2) d m , J y y = ∫ (m) (x 2 + z 2) d m , J z z = ∫ (m) (x 2 + y 2) d m . {\displaystyle J_{xx}=\int \limits _{(m)}(y^{2}+z^{2})dm,\quad J_{yy}=\int \limits _{(m)}(x^{2}+z^{2})dm,\quad J_{zz}=\int \limits _{(m)}(x^{2}+y^{2})dm.}

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора J ^ {\displaystyle {\hat {J}}} :

J ^ d = Q ^ T ⋅ J ^ ⋅ Q ^ , {\displaystyle {\hat {J}}_{d}={\hat {Q}}^{T}\cdot {\hat {J}}\cdot {\hat {Q}},} J ^ d = ‖ J X 0 0 0 J Y 0 0 0 J Z ‖ , {\displaystyle {\hat {J}}_{d}=\left\Vert {\begin{array}{ccc}J_{X}&0&0\\0&J_{Y}&0\\0&0&J_{Z}\end{array}}\right\Vert ,}

где Q ^ {\displaystyle {\hat {Q}}} - ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины J X , J Y , J Z {\displaystyle J_{X},J_{Y},J_{Z}} - главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

I s = J X ⋅ s x 2 + J Y ⋅ s y 2 + J Z ⋅ s z 2 , {\displaystyle I_{s}=J_{X}\cdot s_{x}^{2}+J_{Y}\cdot s_{y}^{2}+J_{Z}\cdot s_{z}^{2},}

откуда получается уравнение эллипсоида в собственных координатах. Разделив обе части уравнения на I s {\displaystyle I_{s}}

(s x I s) 2 ⋅ J X + (s y I s) 2 ⋅ J Y + (s z I s) 2 ⋅ J Z = 1 {\displaystyle \left({s_{x} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{X}+\left({s_{y} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{Y}+\left({s_{z} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{Z}=1}

и произведя замены:

ξ = s x I s , η = s y I s , ζ = s z I s , {\displaystyle \xi ={s_{x} \over {\sqrt {I_{s}}}},\eta ={s_{y} \over {\sqrt {I_{s}}}},\zeta ={s_{z} \over {\sqrt {I_{s}}}},}

получаем канонический вид уравнения эллипсоида в координатах ξ η ζ {\displaystyle \xi \eta \zeta } :

ξ 2 ⋅ J X + η 2 ⋅ J Y + ζ 2 ⋅ J Z = 1. {\displaystyle \xi ^{2}\cdot J_{X}+\eta ^{2}\cdot J_{Y}+\zeta ^{2}\cdot J_{Z}=1.}

Расстояние от центра эллипсоида до некоторой его точки связано со значением момента инерции тела вдоль прямой, проходящей через центр эллипсоида и эту точку.