Измерения физических величин и их классификация. Статические и динамические измерения физических величин Основные характеристики измерений

Физическая величина – свойство физических объектов, общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого из нас. Качественная сторона понятия «физическая величина» определяет ее род (например, электрическое сопротивление как общее свойство проводников электричества), а количественная – ее «размер» (значение электрического сопротивления конкретного проводника, например R=100 Ом).

Размер физической величины – количественная определенность величины, присущая конкретному предмету, системе, явлению или процессу.

Значение физической величины – оценка размера физической величины в виде некоторого числа принятых для нее единиц измерения. Числовое значение физической величины – отвлеченное число, выражающее отношение значения физической величины к соответствующей единице данной физической величины (например, 10В – значение амплитуды напряжения, причем само число 10 и есть числовое значение).

Истинным значением физической величины называют значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта. Определить экспериментально его невозможно вследствие неизбежных погрешностей измерения.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой физической величины. В метрологии существуют два основных постулата: 1) истинное значение определяемой величины существует и оно постоянно ; 2) истинное значение измеряемой величины отыскать невозможно .

Действительным значением физической величины называют ее значение, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для определенной цели может быть использовано вместо него. Действительное значение физической величины определяют по образцовым мерам и приборам, погрешностями которых можно пренебречь по сравнению с погрешностями применяемых рабочих средств измерения.

Международная система единиц физических величин. Единицы физических величин делят на основные и производные и объединяют в системы единиц физических величин .

В основу системы СИ положены семь основных и две дополнительные физические величины. Основные единицы: метр, килограмм, секунда, ампер, кельвин, моль и кандела.

Единица длины – метр – длина пути, которую проходит свет в вакууме за 1/299792458 долю секунды;

единица массы – килограмм – масса, равная массе международного прототипа килограмма, представляющего цилиндр из сплава платины и иридия;

единица времени секунда – продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия -133 при отсутствии возмущения со стороны внешних полей;



единица силы электрического тока ампер – сила неменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого, создал бы между этими проводниками силу, равную на каждый метр длины;

единица термодинамической температуры кельвин -1/273,16 часть термодинамической температуры тройной точки воды, т.е. температуры, при которой три фазы воды – парообразная, жидкая и твердая – находятся в динамическом равновесии;

единица количества вещества моль – количество вещества, содержащего столько структурных элементов, сколько содержится в углероде -12 массой 0,012 кг;

единица силы света кандела – сила света в заданном направлении источника, испускающего монохроматическое излучение частотой (длина волны около 0,555 мкм), чья энергетическая сила излучения в этом направлении составляет 1/683 Вт/ср (ср – стерадиан).

Дополнительные единицы системы СИ предназначены только для образования единиц угловой скорости и углового ускорения. К дополнительным физическим величинам системы СИ относят плоский и телесный углы.

Радиан (рад) – угол между двумя радиусами окружности, длина дуги которой равна этому радиусу.

Стерадиан (ср) – телесный угол с вершиной в центре сферы, вырезающий на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Производные единицы системы СИ образуются из основных и дополнительных.

Единицы физических величин делят на системные и внесистемные.



Системная единица – единица физической величины, входящая в одну из принятых систем. Все основные и производные, а также кратные и дольные единицы являются системными.

Внесистемная единица – единица физической величины, не входящая в принятые системы единиц. Внесистемные единицы делят на: допускаемые наравне с единицами СИ; допускаемые к применению в специальных областях; временно допускаемые и устаревшие. Например, плоские углы чаще всего измеряют в угловых градусах, минутах и секундах. Эти внесистемные единицы допущены к применению наравне с единицами СИ. Среди получивших широкое распространение внесистемных единиц следует отметить киловатт-час, градус Цельсия и пр.

На практике применение целых единиц не всегда удобно, так как в результате измерений получают очень большие или очень малые их значения. Поэтому в системе СИ установлены ее десятичные кратные и дольные единицы, которые образуются с помощью множителей. Кратная единица физической величины – единица, большая в целое число раз системной, например килогерц (10 3 Гц). Дольная единица физической величины – единица, меньшая в целое число раз системной, например микрогенри (10 -6 Гн). Наименования кратных и дольных единиц системы СИ содержат ряд приставок, соответствующих множителям.

Основные характеристики измерений. Основными характеристиками измерений являются: результат и погрешность.

Результат измерений физической величины – значение физической величины, полученное путем ее измерения. Часто в полученный результат вносят поправки.

– разность между показаниями средства измерения и истинным значением измеряемой физической величины.

Качество измерений характеризуется точностью, правильностью, сходимостью и воспроизводимостью, достоверностью, а также размером допускаемых погрешностей.

Достоверность – характеристика качества измерений, отражающая доверие к их результатам, которая определяется доверительной вероятностью того, что истинное значение измеряемой величины находится в некотором заданном интервале. Подобный интервал называют доверительным и между его границами с заданной доверительной вероятностью

находится истинное значение оцениваемого параметра. В (1.1) параметр q – уровень значимости ошибки, – нижняя и верхняя границы доверительного интервала.

Шкала физической величины – упорядоченная последовательность значений физической величины, принятая по результатам точных измерений. Среди шкал следует выделить три основных типа: шкалы наименований, интервалов и абсолютные шкалы.

Шкала наименований (шкала классификации) основана на приписывании объекту цифр, играющих роль простых имен.

Шкала интервалов (шкала разностей) отражает разность значений физической величины. К таким шкалам относятся температурные шкалы Цельсия, Фаренгейта и Реомюра. В температурной шкале Цельсия за начало отсчета разности температур принята температура таяния льда.

Абсолютные шкалы имеют естественное однозначное определение единицы измерения. Данные шкалы соответствуют относительным величинам: коэффициенту усиления, коэффициенту ослабления и т.д.

Виды измерений. Виды измерений определяются физическим характером измеряемой величины, требуемой точностью и необходимой скоростью измерений, условиями и режимом измерений и пр. Наиболее широко применяется классификация по общим приемам получения результатов измерений, согласно которым измерения делятся на прямые, косвенные, совместные и совокупные.

Прямыми называются измерения, при которых искомое значение величины находят непосредственно по показаниям средства измерения. Аналитически прямые измерения записывают в виде

где Х – значение величины, найденное путем ее измерения и называемое результатом измерения.

Косвенные измерения – это измерения, при которых значение измеряемой величины находят на основании известной зависимости между ней и величинами, определяемыми прямыми измерениями, которые проводились в одинаковых условиях. Косвенные измерения можно охарактеризовать следующей формулой:

где - результаты прямых измерений величин, связанных функциональной зависимостью с искомым значением измеряемой величины А.

Совокупными называют проводимые одновременно измерения нескольких одноименных величин, при которых их значения находят решением системы уравнений, получаемых при прямых или косвенных измерениях различных сочетаний этих величин.

Совместными называются проводимые одновременно измерения двух или нескольких неодноименных величин для установления зависимости между ними.

Следовательно, совместные измерения можно интерпретировать как обобщение косвенных измерений, а совокупные – как обобщение прямых измерений.

Эталоны, их классификация. Эталон – средство измерения (или комплекс средств измерений), обеспечивающее воспроизведение и (или) хранение единицы физической величины с наивысшей точностью для данного уровня развития измерительной техники с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений.

Каждый эталон должен обладать тремя взаимосвязанными свойствами: неизменностью, воспроизводимостью и сличаемостью.

Неизменность - свойство эталона удерживать неизменным размер воспроизводимой им единицы физической величины в течение длительного интервала времени.

Воспроизводимость – возможность воспроизведения единицы физической величины с наименьшей погрешностью для существующего уровня развития измерительной техники.

Сличаемость – возможность сличения с эталоном других средств измерений, нижестоящих по поверочной схеме, в первую очередь, вторичных эталонов, с наивысшей точностью для соответствующего уровня развития техники измерений.

Эталоны принято классифицировать в зависимости от назначения, в соответствии с которым предполагается оснащение соответствующих метрологических служб первичными, специальными, национальными, международными и вторичными эталонами.

Первичный эталон обеспечивает воспроизведение единицы физической величины с наивысшей в стране точностью. Первичные эталоны – уникальные средства измерений, часто представляющие собой сложнейшие измерительные комплексы. Данные эталоны составляют основу государственной системы обеспечения единства измерений и подразделяются на специальные, национальные, государственные и международные.

Специальный эталон воспроизводит физическую величину в особых условиях и заменяет для них первичный эталон. Первичные и специальные эталоны являются исходными для страны, их утверждают в качестве национальных.

Национальный – первичный (или специальный) эталон, признанный в качестве исходного на территории государства. Национальные эталоны создают, хранят и применяют центральные метрологические научные институты страны.

Международный – эталон, принятый по международному соглашению в качестве международной основы для согласования с ним размеров единиц, воспроизводимых и хранимых национальными эталонами.

Вторичный эталон – эталон, значение которого устанавливают по первичному эталону. Вторичные эталоны являются частью подчиненных средств хранения единиц и передачи их размеров, создаются в тех случаях, когда это необходимо для организации поверочных работ, а также для обеспечения сохранности и наименьшего износа государственного эталона. По назначению вторичные эталоны делят на эталоны-свидетели, эталоны-копии, эталоны сравнения и рабочие эталоны.

Эталон-свидетель служит для проверки сохранности и неизменности государственного эталона и замены его в случае порчи или утраты. В настоящее время международный эталон килограмма имеет эталон-свидетель.

Эталон-копия предназначен для передачи размера единицы рабочим эталонам. Его создают в случае необходимости проведения большого числа поверочных работ с целью предохранения первичного или специального эталона от преждевременного износа. Эталон-копия представляет собой копию государственного эталона по метрологическому назначению.

Эталон сравнения применяют для взаимного сличения эталонов, которые по тем или иным причинам нельзя непосредственно сравнивать друг с другом.

Рабочий эталон – мера, измерительный прибор или преобразователь, утвержденные в качестве образцовых и служащие для поверки по ним других средств измерения. Рабочие эталоны предназначены для поверки наиболее точных средств измерений. Рабочие эталоны при необходимости подразделяют на 1-й, 2-й и последующие разряды, определяющие порядок их соподчинения в соответствии с поверочной схемой.

Основная литература:

Дополнительная литература:

Контрольные вопросы:

1. Что такое физическая величина и размерность физической величины?

2. Приведите основные, дополнительные и производные физические величины?

3. Что такое шкала физической величины?

4. Что такое эталон физической величины?

Тема лекции 2. Измерения. Погрешности измерений. Цель измерений.Качество,точность и погрешности измерений.Систематические погрешности.Методы исключениясистематических погрешностей.

Цель измерений - получение результата, т. е. оценки истинного значения физической величины. Для этого измерения необходимо проводить с возможно большей достоверностью и точностью. Но ка­кими бы точными и совершенными ни были средства и методы изме­рений и как бы тщательно измерения ни выполнялись, их результат всегда отличается от истинного значения измеряемой величины, т.е. определяется с некоторой погрешностью.

Если прямое измерение физической величины проведено один раз (так называемое однократное прямое измерение), то результатом измерения является непосредственное показание средства измерения. При этом за погрешность результата измерения часто принимают погрешность средства измерения.

В случае многократных наблюдений результат измерения и его погрешность находят различными методами статистической обработ­ки всех выполненных наблюдений.

Качество, точность и погрешности измерений. Под качеством измерений понимают совокупность свойств, обу­словливающих получение результатов этих измерений с требуемыми точностными характеристиками в необходимом виде и установлен­ные сроки. Качество измерений характеризуется, прежде всего, такими показателями как точность (погрешность), правильность и достовер­ность. Точность результата измерений - основная характеристика качества измерений, отражающая близость к нулю погрешности этого результата.

Погрешностью результата измерения называется отклонение найденного значения от истинного значения измеряемой физиче­ской величины. Поскольку истинное значение измеряемой величины не известно, то при количественной оценке погрешности пользуются действительным значением физической величины.

Погрешность средства измерения представляет собой разность между показания ми средства измерения и истинным (действительным) значением измеряемой физической величины. Эта погрешность харак­теризует точность результатов измерений, проводимых используемым средством измерений.

Абсолютной погрешностью , выражаемой в единицах измеряемой величины, называют отклонение результата измерения xот истинного значения x и

Абсолютная погрешность характеризует значение и знак полу­ченной погрешности, но не определяет качество самого измерения. Характеристикой качества измерения является точность измерения, отражающая меру близости результата измерения к истинному значе­нию измеряемой величины. Высокой точности измерений со­ответствует малая погрешность.

Относительной погрешностью называют отношение аб­солютной погрешности измерения к истинному значению измеряемой величины:

Мерой точности измерений служит показатель точности, обрат­ный модулю относительной погрешности: . Часто относи­тельную погрешность выражают в процентах: . По­скольку обычно << то относительная погрешность может быть определена как или

Приведенной погрешностью выражающей потенциальную точность измерений, называют отношение абсолютной погрешности к некоторому нормирующему значению (например, к конечному значению шкалы):

Систематические погрешности - составляющие погрешности измерений, сохраняющиеся постоянными или закономерно изме­няющиеся при многократных измерениях величины в одних и тех же условиях. Их отличительным признаком является то, что они могут быть предсказаны и обнаружены. Систематические погрешности выявляют детальным анализом их возможных источников и уменьшают введением соответствующей поправки, применением более точных приборов, калибровкой прибо­ров с помощью рабочих мер и т. п.

Случайные погрешности составляющие погрешности изме­рений, изменяющиеся случайным образом по значению и знаку при повторных измерениях одной и той же физической величины в одних и тех же условиях. Случайные составляющие погрешности измерений приводят к неоднозначности показаний и проявляются при повтор­ных измерениях одной и той же физической величины в виде неко­торого разброса получаемых результатов. Они могут быть вызваны, например, неправильным функционированием электронных элемен­тов измерительного устройства.

Грубые погрешности (промахи) - погрешности, существенно превышающие ожидаемые при данных условиях измерения. Они воз­никают из-за неучтенных внешних воздействий. Так, грубые погреш­ности могут быть вызваны кратковременными скачками питающего напряжения при включении в сеть мощных потребителей энергии. Промахи могут быть обусловлены и неправильными действиями опе­ратора, в частности возникающими ошибками при списывании им показаний измерительного прибора.

Итак, если не учитывать грубые погрешности, абсолютную пог­решность измерения , определяемую выражением (2.1), можно представить суммой систематической и случайной составляющих:

Из соотношения (2.4) следует, что абсолютная погрешность, как и результат измерения является случайной величиной.

Методические погрешности возникают из-за несовершенства метода измерений, некорректности алгоритмов или формул, по кото­рым производят вычисления результатов измерений, из-за влияния выбранного средства измерения на измеряемые параметры сигналов и т.д. Если, например, вольтметр имеет недостаточно высокое входное сопротивление, то его подключение к схеме способно изменить в ней распределение токов и напряжений. При этом результат измерения будет отличаться от действительного.

Пример 2.1. Покажем, как появляется методическая погрешность при измерении сопротивления резистора R x с помощью метода амперметра­= вольтметра (рис. 2.1).

Решение. Для определения зна­чения сопротивления R x необходимо измерить ток I R ,проте­кающий через резистор, и падение напряжения на нем U R .

В приведенной на рис. 2.1 схеме, реализующей этот метод измерения, падение напряжения на резисторе R x измеряется вольтметром V непос­редственно, в то время как амперметр А измеряет суммарный ток, одна часть которого протекает через резистор, а другая часть - через вольтметр. В результате измеренное значение со­противления будет не R x =U R /I R , а R" =U R /(I R +I V), и появится методиче­ская погрешность .Методическая погрешность уменьшается и стремится к нулю при токе , т. е. при внутреннем сопротивлении вольтметра .

Инструментальные (аппаратурные) погрешности возникают из-­за несовершенства средств измерения, т. е. от их собственных по­грешностей. Уменьшить инструментальные погрешности можно применением более точного прибора.

Внешние погрешности связаны с отклонением одной или нескольких влияющих величин от нормальных значений или выходом их за пределы нормальной области.

Субъективные погрешности вызваны ошибками эксперимента­тора при отсчете показаний (погрешности от небрежности и невни­мания экспериментатора).

Статические погрешности возникают при измерении уста­новившегося во времени значения измеряемой величины.

Динамические погрешности имеют место при динамических из­мерениях, когда измеряемая физическая величина изменяется во вре­мени. Причина появления динамических погрешностей состоит в не­соответствии скоростных (временных) характеристик прибора и ско­рости изменения измеряемой величины.

Основная погрешность средств измерений имеет место при нор­мальных условиях эксплуатации, оговоренных в регламентирующих документах.

Дополнительная погрешность средств измерений возникает из-за выхода какой-либо из влияющих величин за пределы нормальной об­ласти значений.

Систематические погрешности . Источниками систематических составляющих погрешности из­мерения могут быть объект и метод измерения, средства измерения, условия измерения и экспериментатор. При этом оценивание систе­матических составляющих представляет достаточно трудную мет­рологическую задачу. Важность ее определяется тем, что знание систематической погрешности позволяет ввести соответствующую поправку в результат измерения и тем самым повысить его точ­ность. Трудность же состоит в сложности обнаружения системати­ческой погрешности, поскольку ее невозможно выявить путем по­вторных измерений (наблюдений).

Постоянными называют такие систематические погрешности измерения, которые остаются неизменными (сохраняют величину и знак) в течение всей серии измерений.

Переменными называют погрешности, изменяющиеся в процессе измерения. Наличие существенной переменной систематической пог­решности искажает оценки характеристик случайной погрешности. Поэтому она должна обязательно выявляться и исключаться из ре­зультатов измерений.

Методы исключения систематических погрешностей. В реальных условиях полностью исключить системати­ческую составляющую погрешности невозможно. Всегда остаются ка­кие-то неучтенные факторы, которые нужно учитывать и которые будут вызывать систематическую погрешность измерения. Это значит, что систематическая погрешность тоже случайна и ее определение обусловлено лишь установившимися традициями обработки и пред­ставления результатов измерения.

Постоянные систематические погрешности можно обнаружить только путем сравнения результатов измерений с другими, по­лученными с использованием более точных методов и средств изме­рения. В ряде случаев систематическую погрешность можно исклю­чить путем устранения источников погрешности до начала измерений (профилактика погрешности), а в процессе измерений – внесением известных поправок в результаты измерений.

Метод замещения обеспечивает наиболее полную компенсацию постоянной систематической погрешности. Суть данного метода со­стоит в такой замене измеряемой величины известной величиной A,получаемой с помощью регулируемой меры, чтобы показание изме­рительного прибора сохранилось неизменным. Значение измеряемой величины считывают в этом случае по указателю меры. При исполь­зовании данного метода погрешность неточного измерительного при­бора устраняют, а погрешность измерения определяют только по­грешностью самой меры и погрешностью отсчета измеряемой вели­чины по указателю меры.

Метод компенсации погрешности по знаку используют для уст­ранения постоянной систематической погрешности, у которой в зави­симости от условий измерения изменяется только знак. При этом ме­тоде выполняют два измерения, результаты которых соответственно есть , где x и - измеряемая величина. Среднее значение из полученных результатов (x 1 + x 2)/2 = x и представляет со­бой окончательный результат измерения, не содержащий погрешнос­ти .

Метод введения поправок позволяет достаточно просто вычис­лить и исключить из результата измерения систематические погреш­ности. Поправка C - величина, одноименная с изме­ряемой x и, вводимая в результат измерения с целью ис­ключения систематической погрешности. В случае, если принимают и систематическая погрешность полностью исключается из результата измерения.

Поправки определяют экспериментально или путем специальных теоретических исследований и задают в виде формул, графиков или таблиц.

Метод противопоставления применяется в радиоизмерениях для уменьшения постоянных систематических погрешностей при срав­нении измеряемой величины с известной величиной примерно равно­го значения, воспроизводимой соответствующей образцовой мерой.

Метод рандомизации основан на принципе формального перевода сис­тематических погрешностей в случайные. Этот метод позволяет эф­фективно уменьшать постоянную систематическую погрешность (ме­тодическую и инструментальную) путем измерения некоторой вели­чины рядом однотипных приборов с последующей оценкой резуль­тата измерений в виде математического ожидания (среднего арифме­тического значения) выполненного ряда наблюдений. В данном мето­де при обработке результатов измерений используются случайные из­менения погрешности от прибора к прибору.

Основная литература:

Дополнительная литература :

Динамическое измерение -- измерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой величины требует ее измерения с точнейшим определением момента времени.

Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени .

Признаком, по которому измерение относят к статическому или динамическому, является динамическая погрешность при данной скорости или частоте изменения измеряемой величины и заданных динамических свойствах СИ. Предположим, что она пренебрежимо мала (для решаемой измерительной задачи), в этом случае измерение можно считать статическим. При невыполнении указанных требований оно является динамическим.

Динамическая погрешность измерений - погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средства измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Статические измерения

Статическое измерение -- измерение величины, которая принимается в соответствии с поставленной измерительной задачей за неизменяющуюся на протяжении периода измерения.

Например: 1) измерения размеров тела;

2) измерения постоянного давления;

3) измерения пульсирующих давлений, вибраций;

4) измерение линейного размера изготовленного изделия при нормальной температуре можно считать статическим, поскольку колебания температуры в цехе на уровне десятых долей градуса вносят погрешность измерений не более 10 мкм/м, несущественную по сравнению с погрешностью изготовления детали. Поэтому в этой измерительной задаче можно считать измеряемую величину неизменной. При калибровке штриховой меры длины на государственном первичном эталоне термостатирование обеспечивает стабильность поддержания температуры на уровне 0,005 °С. Такие колебания температуры обусловливают в тысячу раз меньшую погрешность измерений -- не более 0,01 мкм/м. Но в данной измерительной задаче она является существенной, и учет изменений температуры в процессе измерений становится условием обеспечения требуемой точности измерений, поэтому эти измерения следует проводить по методике динамических измерений.

Статическая погрешность измерений - погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.

Метрология, стандартизация и сертификация: конспект лекций Демидова Н В

3. Классификация измерений

3. Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

Однократное измерение – это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

Многократные измерения – это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, – четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины. Примером такой постоянной во времени физической величины может послужить длина земельного участка.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы.

Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей). Результат измерения будет зависеть от того, какая величина принимается за базу сравнения.

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений, и некоторой известной зависимости между данными значениями и измеряемой величиной.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений, которая составлена из уравнений, полученных вследствие измерения возможных сочетаний измеряемых величин.

Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

Из книги ОБЩИЕ ТРЕБОВАНИЯ К КОМПЕТЕНТНОСТИ ИСПЫТАТЕЛЬНЫХ И КАЛИБРОВОЧНЫХ ЛАБОРАТОРИЙ автора Автор неизвестен

5.4.6 Оценка неопределенности измерений 5.4.6.1 Калибровочная лаборатория или испытательная лаборатория, осуществляющая свои собственные калибровки, должна иметь и применять процедуру оценки неопределенности измерений при всех калибровках и типах калибровок.5.4.6.2

Из книги Метрология, стандартизация и сертификация: конспект лекций автора Демидова Н В

5.6 Прослеживаемость измерений 5.6.1 Общие положения Все оборудование, используемое для проведения испытаний и/или калибровок, включая оборудование для дополнительных измерений (например окружающих условий), имеющее существенное влияние на точность и достоверность

Из книги Метрология, стандартизация и сертификация автора Демидова Н В

5. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений –

Из книги Очень общая метрология автора Ашкинази Леонид Александрович

9. Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно-измерительные приборы (КИП), и

Из книги автора

Из книги автора

16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения. По способу выражения выделяют абсолютную и относительную

Из книги автора

Из книги автора

2 Классификация измерений Классификация средств измерений может проводиться по следующим критериям.1. По характеристике точности измерения делятся на равноточные и неравноточные.Равноточными измерениями физической величины называется ряд измерений некоторой

Из книги автора

3. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений – это

Из книги автора

8. Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно-измерительные приборы (КИП), и

Из книги автора

13. Погрешность измерений В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения

Из книги автора

16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения.По способу выражения выделяют абсолютную и относительную погрешности.

Из книги автора

18. Выбор средств измерений При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.В случае, если допустимая погрешность не предусмотрена в

Из книги автора

21. Поверка и калибровка средств измерений Калибровка средств измерений – это комплекс действий и операций, определяющих и подтверждающих настоящие (действительные) значения метрологических характеристик и (или) пригодность средств измерений, не подвергающихся

Из книги автора

Общие вопросы измерений Когда измерение становится проблемой Во-первых, когда предполагается измерять какую-то новую величину. Тут есть тонкость - что значит «новая величина»? Физики и инженеры считают, что существует то, что можно измерить. В величину, которую мы

Из книги автора

Обработка результатов измерений Нет данных без обработки и нет обработки без предварительной информации. Когда мы измеряем тестером напряжение в сети, мы немедленно делаем свой вывод - «нормально» или «низковато для этого времени суток» или «почему так много, тестер

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

Однократное измерение – это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

Многократные измерения – это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, – четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины. Примером такой постоянной во времени физической величины может послужить длина земельного участка.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы.

Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей). Результат измерения будет зависеть от того, какая величина принимается за базу сравнения.

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.


Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений, и некоторой известной зависимости между данными значениями и измеряемой величиной.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений, которая составлена из уравнений, полученных вследствие измерения возможных сочетаний измеряемых величин.

Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

Погрешность измерений

В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. А в качестве количественной оценки, как правило, используется погрешность измерений. Причем чем погрешность меньше, тем считается выше точность.

Согласно закону теории погрешностей, если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то число измерений необходимо увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т. д.

Процесс оценки погрешности измерений считается одним из важнейших мероприятий в вопросе обеспечения единства измерений. Естественно, что факторов, оказывающих влияние на точность измерения, существует огромное множество. Следовательно, любая классификация погрешностей измерения достаточно условна, поскольку нередко в зависимости от условий измерительного процесса погрешности могут проявляться в различных группах. При этом согласно принципу зависимости от формы данные выражения погрешности измерения могут быть: абсолютными, относительными и приведенными.

Кроме того, по признаку зависимости от характера проявления, причин возникновения и возможностей устранения погрешности измерений могут быть составляющими При этом различают следующие составляющие погрешности: систематические и случайные.

Систематическая составляющая остается постоянной или меняется при следующих измерениях того же самого параметра.

Случайная составляющая изменяется при повторных изменениях того же самого параметра случайным образом. Обе составляющие погрешности измерения (и случайная, и систематическая) проявляются одновременно. Причем значение случайной погрешности не известно заранее, поскольку оно может возникать из-за целого ряда неуточненных факторов Данный вид погрешности нельзя исключить полностью, однако их влияние можно несколько уменьшить, обрабатывая результаты измерений.

Систематическая погрешность, и в этом ее особенность, если сравнивать ее со случайной погрешностью, которая выявляется вне зависимости от своих источников, рассматривается по составляющим в связи с источниками возникновения.

Составляющие погрешности могут также делиться на: методическую, инструментальную и субъективную. Субъективные систематические погрешности связаны с индивидуальными особенностями оператора. Такая погрешность может возникать из-за ошибок в отсчете показаний или неопытности оператора. В основном же систематические погрешности возникают из-за методической и инструментальной составляющих. Методическая составляющая погрешности определяется несовершенством метода измерения, приемами использования СИ, некорректностью расчетных формул и округления результатов. Инструментальная составляющая появляется из-за собственной погрешности СИ, определяемой классом точности, влиянием СИ на итог и разрешающей способности СИ. Есть также такое понятие, как «грубые погрешности или промахи», которые могут появляться из-за ошибочных действий оператора, неисправности СИ или непредвиденных изменений ситуации измерений. Такие погрешности, как правило, обнаруживаются в процессе рассмотрения результатов измерений с помощью специальных критериев. Важным элементом данной классификации является профилактика погрешности, понимаемая как наиболее рациональный способ снижения погрешности, заключается в устранении влияния какого-либо фактора.

Виды погрешностей

Выделяют следующие виды погрешностей:

1) абсолютная погрешность;

2) относительна погрешность;

3) приведенная погрешность;

4) основная погрешность;

5) дополнительная погрешность;

6) систематическая погрешность;

7) случайная погрешность;

8) инструментальная погрешность;

9) методическая погрешность;

10) личная погрешность;

11) статическая погрешность;

12) динамическая погрешность.

Погрешности измерений классифицируются по следующим признакам.

По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности.

По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности.

По характеру появления погрешности делятся на систематические погрешности и случайные погрешности.

Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.

Абсолютная погрешность меры – это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.

Относительная погрешность – это число, отражающее степень точности измерения.

Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.

Нормирующее значение определяется следующим образом:

1) для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;

2) для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;

3) для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;

4) для средств измерения (измерительных приборов), у которых шкала неравномерна, нормирующее значение принимается равным целой длине шкалы измерения или длине той ее части, которая соответствует диапазону измерения. Абсолютная погрешность тогда выражается в единицах длины.

Погрешность измерения включает в себя инструментальную погрешность, методическую погрешность и погрешность отсчитывания. Причем погрешность отсчитывания возникает по причине неточности определения долей деления шкалы измерения.

Инструментальная погрешность – это погрешность, возникающая из-за допущенных в процессе изготовления функциональных частей средств измерения ошибок.

Методическая погрешность – это погрешность, возникающая по следующим причинам:

1) неточность построения модели физического процесса, на котором базируется средство измерения;

2) неверное применение средств измерений.

Субъективная погрешность – это погрешность возникающая из-за низкой степени квалификации оператора средства измерений, а также из-за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.

Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности.

Статическая погрешность – это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.

Динамическая погрешность – это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).

По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.

Основная погрешность – это погрешность, полученная в нормальных условиях эксплуатации средства измерений (при нормальных значениях влияющих величин).

Дополнительная погрешность – это погрешность, которая возникает в условиях несоответствия значений влияющих величин их нормальным значениям, или если влияющая величина переходит границы области нормальных значений.

Нормальные условия – это условия, в которых все значения влияющих величин являются нормальными либо не выходят за границы области нормальных значений.

Рабочие условия – это условия, в которых изменение влияющих величин имеет более широкий диапазон (значения влияющих не выходят за границы рабочей области значений).

Рабочая область значений влияющей величины – это область значений, в которой проводится нормирование значений дополнительной погрешности.

По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.

Аддитивная погрешность – это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю (абсолютного).

Мультипликативная погрешность – это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям.

Надо заметить, что значение абсолютной аддитивной погрешности не связано со значением измеряемой величины и чувствительностью средства измерений. Абсолютные аддитивные погрешности неизменны на всем диапазоне измерений.

Значение абсолютной аддитивной погрешности определяет минимальное значение величины, которое может быть измерено средством измерений.

Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из-за воздействия влияющих величин на параметрические характеристики элементов прибора.

Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Выделяют:

1) систематические погрешности;

2) случайные погрешности.

В процессе измерения могут также появиться грубые погрешности и промахи.

Систематическая погрешность – это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины. Обычно систематическую погрешность пытаются исключить возможными способами (например, применением методов измерения, снижающих вероятность ее возникновения), если же систематическую погрешность невозможно исключить, то ее просчитывают до начала измерений и в результат измерения вносятся соответствующие поправки. В процессе нормирования систематической погрешности определяются границы ее допустимых значений. Систематическая погрешность определяет правильность измерений средств измерения (метрологическое свойство).

Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки.

Способы исключения систематических погрешностей делятся на четыре вида:

1) ликвидация причин и источников погрешностей до начала проведения измерений;

2) устранение погрешностей в процессе уже начатого измерения способами замещения, компенсации погрешностей по знаку, противопоставлениям, симметричных наблюдений;

3) корректировка результатов измерения посредством внесения поправки (устранение погрешности путем вычислений);

4) определение пределов систематической погрешности в случае, если ее нельзя устранить.

Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений (нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат).

Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы

Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку.

Способ замещения состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: сопротивления, емкости и индуктивности.

Способ компенсации погрешности по знаку состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком.

Способ противопоставления похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения.

Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений. Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов.

Промахи и грубые погрешности – это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из-за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий.

Погрешности средств измерений

Погрешности средств измерений классифицируются по следующим критериям:

1) по способу выражения;

2) по характеру проявления;

3) по отношению к условиям применения. По способу выражения выделяют абсолютную и относительную погрешности.

Относительная погрешность – это число, отражающее степень точности средства измерения.

Относительная погрешность выражается в процентах.

По характеру проявления погрешности подразделяют на случайные и систематические.

По отношению к условиям применения погрешности подразделяются на основные и дополнительные.

Основная погрешность средств измерения – это погрешность, которая определяется в том случае, если средства измерения применяются в нормальных условиях.

Дополнительная погрешность средств измерения – это составная часть погрешности средства измерения, возникающая дополнительно, если какая-либо из влияющих величин выйдет за пределы своего нормального значения.

Представление о физической величине является полным только тогда, когда она измерена. Потребность в измерении ФВ возникла на ранней стадии познания природы и возрастала по мере развития и усложнения производственной и научной деятельности человека. Требования к точности измерения ФВ постоянно возрастают.

Измерить физическую величину – значит сравнить ее с однородной величиной, условно принятой за единицу измерения.

Измерить неизвестную физическую величину можно двумя способами:

а) Прямым измерением называют измерение, при котором значение ФВ определяют непосредственно из опыта. К прямым измерениям относятся, например, измерение массы с помощью весов, температуры – термометром, длины – масштабной линейкой.

б) Косвенным измерением называют измерение, при котором искомое значение ФВ находят путем прямого измерения других ФВ на основании известной зависимости между ними. Косвенным измерением является, например, определение плотности ρ вещества путем прямых измерений объема V и массы m тела.

Конкретные реализации одной и той же ФВ называются однородными величинами. Например, расстояние между зрачками ваших глаз и высота Останкинской башни есть конкретные реализации одной и той же ФВ – длины и поэтому они являются однородными величинами. Масса сотового телефона и масса атомного ледокола также однородные физические величины.

Однородные ФВ отличаются друг от друга размером. Размер ФВ – это количественное содержание в данном объекте свойства, соответствующего понятию «физическая величина». Размеры однородных физических величин различных объектов можно сравнивать между собой.

Подчеркнем существенное отличие физических величин от единиц их измерения . Если измеренное значение ФВ отвечает на вопрос «сколько?», то единица измерения отвечает на вопрос «чего?». Некоторые единицы измерения удается воспроизвести в виде каких-то тел или образцов (гири, линейки и т.п.). Такие образцы называются мерами . Меры, выполненные с наивысшей достижимой в настоящее время точностью, называются эталонами .

Значением физической величины является оценка физической величины в виде некоторого числа принятых для нее единиц. Основными единицами измерения называют произвольные единицы измерения для немногих величин (независимых друг от друга), с которыми все остальные находятся в определенной связи. Следует различать истинное и действительное значения физической величины.

Истинное значение ФВ – это идеальное значение ФВ, существующее объективно независимо от человека и методов его измерения. Однако истинное значение ФВ нам, как правило, неизвестно. И узнать его можно лишь приблизительно с определенной точностью путем измерения.


Действительное значение ФВ – есть значение, найденное экспериментальным путем – измерением. Степень приближения действительного значения ФВ к истинному зависит от совершенства применяемых технических средств измерения.

Измерения ФВ основываются на различных физических явлениях. Например, для измерения температуры используется тепловое расширение тел, для измерения массы тел взвешиванием – явление тяготения и т.д. Совокупность физических явлений, на которых основаны измерения, называют принципом измерения .

К средствам измерения относятся меры, измерительные приборы и др.

Измерительный прибор – это средство измерения, предназначенное для формирования сигнала измерительной информации в форме, доступной для непосредственного восприятия человеком. К измерительным приборам относятся амперметр, динамометр, линейка, весы, манометр и др.

Кроме основных физических величин в физике существуют производные физические величины, которые можно выразить через основные. Для этого необходимо ввести два понятия: размерность производной величины и определяющее уравнение. Производные единицы получаются из основных при помощи уравнений связи между соответствующими величинами.

Чувствительность измерительных приборов – Измерительные приборы характеризуются чувствительностью . Чувствительность измерительного прибора равна отношению линейного (Dl) или углового (Da) перемещения указателя сигнала по шкале прибора к вызвавшему его изменению DX измеряемой величины X. Чувствительность определяет минимальное измеряемое значение ФВ с помощью данного прибора.